

Welcome to Roadiz v2 documentation

Roadiz is a polymorphic CMS based on a node system that can handle many types of services.
It is based on Symfony framework, Doctrine ORM, API Platform and Twig for maximum performances and security.

Roadiz node system allows you to create your data schema and to organize your content as you want.
We designed it to break technical constraints when you create tailor-made websites architectures and layouts.

Imagine you need to display your graphic design portfolio and… sell some t-shirts. With Roadiz you will be able to
create your content forms from scratch and choose the right fields you need. Images and texts for your projects.
Images, texts, prices and even geolocation for your products. That’s why it’s called polymorphic.

Note

This is documentation for Roadiz v2.x, browse v1.x documentation

Philosophy

When discovering Roadiz back-office interface, you will notice that there aren’t any Rich text editor also called WYSIWYG editors.
We chose to promote Markdown syntax in order to focus on content hierarchy and quality
instead of content style. Our guideline is to preserve and respect the web-designers and graphic designers work.

You’ll see that we built Roadiz as web-designers and for web-designers. It will allow you to create really quickly website
prototypes using Twig templates or develop complex headless websites with the power of API Platform.

We want Roadiz to be a great tool for designers and developers to build strong web experiences together.
But we thought of editors too! Roadiz back-office theme “Rozier” has been designed to offer every back-users a
great writing and administrating experience.

User documentation

	User documentation
	Write in Markdown

	Managing nodes

	Managing node-types

	Managing documents

	Managing users

Developer documentation

	Developer documentation
	First steps

	Node system

	Building headless websites using API

	Tag system

	Documents system

	Attributes

	Forms

	Contributing

	Troubleshooting

Extension documentation

	Extension system
	Extending Roadiz

	Events

	Extending Solr indexation

User documentation

Note

User documentation is on the way.
We invite you to send us questions on our Gitter account [https://gitter.im/roadiz/roadiz] or
to leave some documentation suggestions on our Github repository [https://github.com/roadiz/docs/issues].

First of all, you will need to connect to Roadiz’ backoffice in order to make changes to your website
contents. To connect, you just have to write /rz-admin after your website domain name, in your browser address bar.
Then you will be able to enter your username and password that you chose during Roadiz installation
or that you received by email.

[image: ../_images/login-page.jpg]
Here you can choose to keep your connection active for a couple of days, if your browser accepts cookies.

If you forgot your credentials, the Forgot password? section will ask you an email to send you a
password reset link.

Table of contents

	Write in Markdown
	Titles

	Bold

	Italic

	Strike-through

	Ordered and unordered lists

	New paragraph and line-break

	Hypertext links

	Block quotes

	Images

	Footnotes

	Managing nodes
	Node-tree navigation

	Creating a node

	Edit an existing node

	Nodes publication system

	Managing node-types
	Add node-type

	Delete node-type

	Adding node-type field

	Other actions

	Managing documents
	Upload document

	Embed document

	Random document

	Unused document

	Managing users
	Create a new user

	Delete user

	Adding role

	Other action

	Enable SSO for back-office users

Write in Markdown

Markdown is a lightweight markup language with plain text formatting syntax designed so that it can be converted to HTML and many other formats using a tool by the same name. […] The key design goal is readability – that the language be readable as-is, without looking like it has been marked up with tags or formatting instructions, unlike text formatted with a markup language, such as Rich Text Format (RTF) or HTML, which have obvious tags and formatting instructions.

—Wikipedia article — https://en.wikipedia.org/wiki/Markdown

Titles

Add two hashtag # or more according to your title importance level.
Backoffice shortcut buttons allow to directly insert your titles marks before your selected text. Make sure to leave a blank line before each new title you write.

Architecture
Modern architecture

Be careful not to use only one hashtag to create a first-level title as this
is usually used for pages main title.

Alternate syntax

Main title and second level titles can be written using = and - as
underline characters.

Architecture
============

Modern architecture

Bold

Insert two stars * before and after your text to set in bold.
Backoffice shortcut button allows to insert directly the 4 characters around your selected text.

This is a **bold text.** And a normal one.

Be careful not to leave whitespaces inside your stars group (in the same
way you do with parenthesis) otherwise your text won’t be styled.

Italic

Insert one star * before and after your text to set in italic.
Backoffice shortcut button allows to insert directly the 2 characters around your selected text.

This is an *italic text.* And a normal one.

Bold and italic marks can of course be combined using 3 stars before and after your selected text.

What if * character is already in use

Bold and italic markup can be performed using _ (underscore) character
too if you actually need to write a star character in your text.

A __3* Bed & Breakfast__ has just opened its doors in middletown.

Strike-through

Insert two tildes ~ before and after your text to strike-through.

This is ~~striked-through text~~.

Ordered and unordered lists

Insert a star * or a dash - followed by a single whitespace for each of your list item.
One item per line. Leave a blank line before and after your list. For ordered list, use a digit followed by a dot and a whitespace instead.

* A line
- An other line
* A unknown line

1. The first item
2. The second item
3. The third item

If you need to break an item into several lines, you’ll need to use the line-break markup.

Nested list

You can insert a second/third/… level for your list, just by leaving four spaces before your new list-item mark.

- A list item
 - A sub-item
 - A second sub-item
 1. An ordered sub-sub-item
 2. The second sub-sub-item

New paragraph and line-break

A simple line-break is always ignored by Markdown language because it makes a difference between a paragraph and a line-break.
To simply create a line-break without creating a new paragraph, leave at least 3 spaces at the end of your text line then go to a new line.

Address:<space><space><space>
26 rue Burdeau<space><space><space>
69001 Lyon<space><space><space>
France

To create a new paragraph, always leave a blank line between your text blocks. Any additional blank line will be ignored.

Nullam quis risus eget urna mollis ornare vel eu leo.
Cras justo odio, dapibus ac facilisis in, egestas eget quam.

Aenean eu leo quam. Pellentesque ornare sem lacinia
quam venenatis vestibulum.

According to your website design (CSS), new paragraphs may have no visual margins between them.
Inserting more than one blank line won’t add any additional visual space as Markdown ignores it.

Hypertext links

Write link label between braces immediately followed by the URL between parenthesis. For external links
do not forget protocol prefix http:// or https://.

[My link](http://www.google.com)

To create a internal link, just use relative notation:

[Contact us](/page/contact-us)

Then, for an email link, use mailto: prefix:

[John Doe](mailto:jdoe@example.com)

A link title can be added by inserting it before ending parenthesis wrapped in quotes.

[My link](http://www.google.com "Link to Google website")

Block quotes

Insert a > sign before each new paragraph and a space to wrap your text in a
quote block. You can then use all other Markdown symbols inside your quote.

> ### Donec ullamcorper nulla non metus auctor fringilla.
> Aenean lacinia **bibendum** nulla sed consectetur.
> Vestibulum id ligula porta felis euismod semper.

Images

Images use the link syntax with an exclamation mark prefix !. For external images
do not forget to write full URL with protocol http:// or https://.

![A cat](/files/cat.jpg)

![A cat from an other website](https://www.example.com/images/cat.jpg)

Be careful, images will be displayed as is, unless your webdesigner planned to adapt image
size coming from Markdown fields using CSS. As links, an external image may break if its owner
deletes the original image. Make sure to host critical images directly on your website and to use relative URL.

Footnotes

Footnotes are not supported with basic Markdown syntax, but the Markdown Extra one. So before
using them, make sure your webdesigner used the right Markdown parser in your theme.

Praesent commodo cursus magna[^note], Sed posuere consectetur est at
lobortis. Vel scelerisque nisl consectetur et[^othernote].

[^note]: This a footnote
[^othernote]: This a second footnote

Markdown will automatically generate anchor links between your footnote and its reference.
It will automatically use numbers as footnote reference labels, so you don’t have to bother to write
numbers yourself but easy-to-remember markers labels.

Managing nodes

Nodes are the most important part of Roadiz CMS. They are your content which can
be shaped as you want according to your node-types definitions.
A node can be a blog-post, a content page, a photo gallery, even a shop product.
This is why we called it “Node”, it’s an abstract data container interconnected with
other node in a tree.

Node-tree navigation

Node tree

Simple node-tree after installing Roadiz with Default theme.

[image: ../../_images/node-tree.png]
Contextual menu for home node.

[image: ../../_images/node-tree-contextual.png]

Each node has a place in your website, that’s why we chose to arrange your content
in a tree-shaped way. It’s intuitive and it works the same as your computer files.

	To edit a node’ content, simply click on it.

	To move a node across your tree, drag & drop using its handle (round or rombus shape). You can drop a node after or before an other one. You can also drop inside just by moving your mouse a bit on the right, you should see the node shadow to shift right.

	Other actions are available from each node contextual menu. Right click on the node or click on the arrow at the right when you pass your mouse over.

Contextual menu actions

	Add child node: to create a content inside the current node.

	Edit node: links to the current node “edit content” page.

	Move to first position: to move a node at the first position inside its parent node.

	Move to last position: basically the same for the last position.

	Delete node: to move current node to the trashcan. A confirmation page will be prompt before really deleting a node.

	Hide/Show: Change a node’ visibility. A hidden node won’t be displayed in Urls and your website, even if you are an administrator.

	Publish/Unpublish: Change a node’ publication status. Unpublished nodes are not visible to anonymous visitors, but visible for back-office users using ?_preview=1 query parameter.

	Publish offspring: Publish a node and all its children nodes recursively.

	Duplicate: Copy all current node’ content and relationships into a new node.

Creating a node

Add buttons

[image: ../../_images/add-node-btn.png]
“Add node” button located at the top of your node-tree.

[image: ../../_images/add-child-node-btn.png]
“Add a child node” button, which is located at the top of each node’ contextual menu.

To add a blank node to your node-tree, you will need to choose your location. In Roadiz
you can add a content at the root of your tree or choose a “parent-node”. In both cases
you will be asked to choose a node-type and a node-name before creating your node.

	Node name is the global identifier for your node. It must be unique and won’t change from one translation to an other. It can be changed later except if your developer locked it up. Node name is usually used to build your pages URL.

	Node-type defines what fields will be available in your content. Choose well as you won’t be able to change it later, you ’ll have to delete and recreate an other node.

Edit an existing node

Node edition page is composed in several tabs.

	Node content

	Node parameters

	Tags

	SEO

	Tree, if your node is set up as a stack

Node content

[image: ../../_images/node-edit-page.png]
Contents tab is basically the main part where you will edit your node specific data,
using node-type fields such as text fields, or documents fields, etc.

This tab will display different content over translations depending on which fields are marked as universal or not.

Node parameters

[image: ../../_images/node-parameters-page.png]
Parameters are global data such as your node name. They are used for managing your node
visibility according to each user role and node back-office’ settings. This section should
not be used so often as parameters will be set once by your developer.

This tab will display the same content over translations.

Side actions and parameters

Additional parameters are available on the right action-menu. These parameters are
node-wide, they will apply on each node translations.

[image: ../../_images/node-parameters-panel.png]

	Visibility: Hide or show current node (according to your theme)

	Hide children: Switch current node to a stack, children nodes won’t appear in the global Node-Tree anymore. You will be able to add Stack type buttons in the node parameters tab.

	Lock status: Prevent users to delete current node or rename it. You should switch it on if your rely on some nodes in your themes.

	Forbid children: Prevent users to create children nodes.

Tags

[image: ../../_images/node-tags-page.png]
This tab will display the same content over translations.

SEO

[image: ../../_images/node-seo-page.png]
This tab will display different content over translations.

Tree

When a node is defined as a stack, Tree becomes its default view. You can set the
default ordering in the Edit tab. And node-types set as publishable will display their publication date before its name.

[image: ../../_images/node-tree-tab.png]
Tree view becomes very interesting if you have many many children nodes, when you have blog posts
or portfolio projects for example.

[image: ../../_images/add-stack-type.png]
Then you can add stack type in Edit tab to make some handy
quick-add buttons to this view.

[image: ../../_images/quick-add-button.png]

Nodes publication system

During its lifecycle, every nodes can have a different publication status.
When you create a new content, it will be automatically set as Draft by Roadiz so that
you can edit it without bothering your visitors and sharing unfinished work.

Available statuses:

	Draft: First status for new nodes

	Pending validation: It’s a medium status for user that do not have permission to publish nodes

	Published: That’s the most important status, it will set the green light to your visitor to view your content

	Archived: When you don’t want to publish a node but you don’t want to delete it either

	Deleted: It’s the last status for your nodes. Before emptying your node trashcan, every content will wait with this status.

To improve status visibility, draft and pending nodes have a rhombus shape and published nodes have a circle shape.

Preview unpublished nodes

Unpublished nodes are not viewable for anonymous visitors, Roadiz allows backend users to preview them
adding a dedicated query parameter called ?_preview=1 in your website URLs. Using a different URL than your
public website is very important as it could lead to errors or to expose unpublished content if your website
is hosted behind a reverse proxy cache like Varnish.

For example, if your my-news page is not published yet, connecting to http://mywebsite.com/my-news will lead
to a 404 page for your anonymous visitors, as well as you too. If you want to preview it, you’ll have to connect to
http://mywebsite.com/my-news?_preview=1. This URL will only allow authenticated backend users, other people will
be denied.

Managing node-types

This is a simple guide on how to create and manage nodes using Roadiz CLI, add and remove node fields, or even how to import nodes.

First and foremost, you need to create a new node-type before creating any kind of node.

If you want to know more about what a node-type is, please visit the other section of the developer documentation.

When working with Roadiz in the back-office, you can easily manage node-types via the Construction icon in the toolbar.

[image: ../../_images/manage_nodetype_toolbar.png]

Add node-type

Once you have landed on the Node-Types page (https://mywebsite.com/rz-admin/node-types), you can create node-types by clicking on Add a node-type.

Note

You can export and import a node-type if you have a .json file. See Other action for more information.

[image: ../../_images/create_nodetype_button.png]
Upon filling the two mandatory settings Name (that developers will use) and Display Name (that back-office users will see), you are now ready to create your first node type.

Warning

Be careful when you name your node-type though, Name field can’t be changed once the node-type is created. See Delete node-type section to know how to delete a node-type.

[image: ../../_images/add_nodetype.png]
Other options (Visible, Newsletter node-type, Node-type hides its nodes and customizable color) aren’t required and can always be altered later on.

You have now created your first node-type! It now appears on the node-type page along other node-types and you can now manage its fields.

[image: ../../_images/created_nodetype.png]

Delete node-type

Made a typo when creating a node-type? No longer in need of a node-type ? You can delete it by simply clicking the trashcan icon on the Node Types page (https://mywebsite.com/rz-admin/node-types).

[image: ../../_images/delete_nodetype.png]

Adding node-type field

To add fields to your newly-created node-type, click the Manage node-type fields icon.

[image: ../../_images/manage_nodetype_fields.png]
Then click on ‘Add a node-type field’ button.

[image: ../../_images/add_nodetype_field_menu.png]
Fill in the form to create a new field :

	Name: what developers will use

	Label: what back-office users will see

	Type: single choice option that will define the content (basic text, markdown text, documents, email, number, single or multiple choice, children nodes etc.)

	Description, Group name, Visible, Indexed, Default values, Min length, Max length (optional)

Note

Default values is an interesting field as you can specify what kind of node-types that can be linked to this node-type. You can also use it as a filter in the explorer, and only show those default values.

[image: ../../_images/add_nodetype_field.png]

Other actions

From one website to another, you can export node-types as .json files.

[image: ../../_images/export_nodetype.png]
An .json file should look like this when you open it in any editor:

{
 "name": "Page",
 "displayName": "Page",
 "visible": true,
 "publishable": false,
 "reachable": true,
 "newsletterType": false,
 "hidingNodes": false,
 "color": "#000000",
 "fields": [
 {
 "position": 1.0,
 "name": "content",
 "label": "Content",
 "type": 4,
 "expanded": false,
 "nodeTypeName": "Page",
 "universal": false,
 "indexed": false,
 "visible": true
 },
 {
 "position": 2.0,
 "name": "children",
 "label": "N\u0153uds enfants",
 "type": 16,
 "expanded": false,
 "nodeTypeName": "Page",
 "universal": false,
 "indexed": false,
 "visible": true
 },
 {
 "position": 3.0,
 "name": "header_image",
 "label": "Header image",
 "type": 9,
 "expanded": false,
 "nodeTypeName": "Page",
 "universal": false,
 "indexed": false,
 "visible": true
 },
 {
 "position": 4.0,
 "name": "pictures",
 "label": "Pictures",
 "type": 9,
 "expanded": false,
 "nodeTypeName": "Page",
 "universal": false,
 "indexed": false,
 "visible": true
 }
],
 "defaultTtl": 0
}

Notice the four fields that have been added to this Page node-type.

You can write an .json file yourself if you feel like it, but it is probably easier to simply export node-types from existing website, then import it on your new website.
It can be easily done by clicking on Import node-type button, then selecting it via your explorer.

[image: ../../_images/import_nodetype.png]
You are close to fully master Roadiz back-office powers! Keep referring to this documentation if you have any problem, and let us know if any information goes missing.

Managing documents

You can manage documents via the Document icon in the toolbar. You can either upload, embed, randomly downloaded documents, and even have a look at unused documents in your website.

[image: ../../_images/toolbar_document.png]

Upload document

Uploading a document has never been this easy: just drag and drop the document in the designated area.

[image: ../../_images/upload_document.png]
When you upload files, Roadiz will try to reduce any image larger than 2500 pixels (width or height) in order to ease up further transformations on it. The CMS will always keep a raw version of your uploaded document if you decide to increase this limit over 2500 pixels.
Keep in mind that Roadiz won’t be able to optimize your image to a better format: for example if you uploaded a PNG image containing no transparent area, the CMS won’t convert it to JPEG format and you will end up with a heavy file even if you resize it.

	Photographs, complex images with no transparency: use JPEG

	Logos, icons, complex images with transparency: use PNG

Using an image optimizer (such as tinyjpg, kraken.io, jpgoptim, …) before uploading onto Roadiz is useless because, the CMS will lose these optimizations when it processes transformations (crop, resizing, contrast and quality).

On the other hand, if your website has been developed with picture support, Roadiz will be able to serve any images in the new WEBP format which is 30% lighter than JPEG and supports transparency (alpha channel). So any user browsing your website with a Chrome, Firefox or Edge will see only WEBP images and will save up minimum 30% of bandwidth usage.
In the near future, AVIF image format will be more supported by major browsers, and Roadiz will be able to generate optimized image with this format too.

Embed document

Here is the magical part of the Documents section. You can have embedded documents from YouTube, SoundCloud, Vimeo, Mixcloud, Spotify, Twitch, TED and Dailymotion, then use them as if they were images in your content blocks.

[image: ../../_images/embed_document.png]

Random document

Random is a cool feature that allows to download random documents to your website from Splashbase.

[image: ../../_images/random_document.png]

Unused document

Clicking Unused document allows you to gather every unused documents on your website, so you can clean your database and get rid of useless documents.

[image: ../../_images/unused_document.png]

Managing users

This is a simple guide on how to create and manage users using Roadiz CLI.

There are two ways of adding users, via the back-office and in command-line, both will be displayed in each section.

When working with Roadiz in the back-office, you can easily manage users via the User system icon in the toolbar.

[image: ../../_images/add_user_toolbar.png]

Create a new user

[image: ../../_images/add_user_button.png]
You can add users simply by clicking Add an user button.

[image: ../../_images/roadiz_add_user.png]
If you create an user without specifying its password, an email with a password reset link will sent.
Make sure that you entered the right email and that your Roadiz website has a mailer configured. New user will be locked
unless he or she resets its password first.

[image: ../../_images/locked_user.png]
A new user without password will stay locked until he or she resets its password.

The command-line bin/console users:create loginname starts a new interactive user creation session.
You will create a new user with login and email, you can also choose if it’s a backend user and if it’s a superadmin.

Delete user

You can remove users by clicking the trashcan icon.

[image: ../../_images/remove_user.png]
The command bin/console users:delete loginname delete the user “loginname”.

Adding role

You can edit a users profile the same way you edit a node-type. You can add roles in the Roles tab.

[image: ../../_images/add_role_user.png]
If you want to add ROLE_SUPERADMIN role to “test” user, it would look like this in command-line:

bin/console users:roles --add loginname
You will be prompted to choose the ROLE with auto-complete feature.

Other action

It is possible to enable or disable users with users:enable or users:disable command.
If a user doesn’t remember his password, you can regenerate it with the users:password command.
For more information and more actions, we invite you to check available commands with:

bin/console list users

Enable SSO for back-office users

Roadiz is compatible with any OpenID single sign-on system (such as Google, Exchange, …) and can
be configured to allow your company users to login to your back-office with several ROLES.

First, make sure to generate and gather the following information from your OpenID provider:

	OpenID client ID

	OpenID client secret

	OpenID auto-discovery URL (i.e. for Google GSuite user https://accounts.google.com/.well-known/openid-configuration)

Then you should decide:

	What roles (comma separated) you want to be automatically granted to users connected with your SSO.

	What domain name to restrict users from. This is very important for Google Suite users because the auto-discovery is the same for everybody. You may not want to allow every Google Suite users to access your back-office 😉.

	A button label for your back-office login page.

config/packages/roadiz_rozier.yaml
roadiz_rozier:
 open_id:
 # Verify User info in JWT at each login
 verify_user_info: false
 # Standard OpenID autodiscovery URL, required to enable OpenId login in Roadiz CMS.
 discovery_url: '%env(string:OPEN_ID_DISCOVERY_URL)%'
 # For public identity providers (such as Google), restrict users emails by their domain.
 hosted_domain: '%env(string:OPEN_ID_HOSTED_DOMAIN)%'
 # OpenID identity provider OAuth2 client ID
 oauth_client_id: '%env(string:OPEN_ID_CLIENT_ID)%'
 # OpenID identity provider OAuth2 client secret
 oauth_client_secret: '%env(string:OPEN_ID_CLIENT_SECRET)%'
 granted_roles:
 - ROLE_USER
 - ROLE_BACKEND_USER
 - ROLE_SUPERADMIN

[image: ../../_images/roadiz_openid_settings.jpg]
Fill all your gathered information to the right Roadiz dotenv variables.

OPEN_ID_DISCOVERY_URL=https://accounts.google.com/.well-known/openid-configuration
OPEN_ID_HOSTED_DOMAIN=my-google-workspace-domain.com
OPEN_ID_CLIENT_ID=xxxxxxx
OPEN_ID_CLIENT_SECRET=xxxxxxx

Then, if your parameter are correct you should see your SSO connect button on Roadiz back-office login page.
Pay attention that if your SSO users do not have sufficient permissions they may have a 403 error after being redirected
from SSO flow.

[image: ../../_images/roadiz_openid_login.jpg]

Note

Google Suite OpenID implementation is described at https://developers.google.com/identity/protocols/oauth2/openid-connect#discovery

First, create a new OAuth2 application on https://console.cloud.google.com/ and follow instructions at https://developers.google.com/identity/protocols/oauth2/openid-connect#getcredentials

Developer documentation

	First steps
	Requirements

	Create a new Roadiz project

	Manual configuration

	Upgrading

	Node system
	Node-types, nodes-sources and nodes

	Node-type fields

	Handling nodes and their hierarchy

	Building headless websites using API
	WebResponse concept

	Exposing node-types

	Serialization groups

	Tag system
	Translate tags

	Tag hierarchy

	Exposing tags in API

	Displaying node-source tags with Twig

	Documents system
	Storing documents elsewhere…

	Exposing documents in API

	Expose document thumbnails

	Expose document alternative sources

	Expose document folders

	Attributes
	Attributes types

	Add attributes to nodes

	Twig extension

	Forms
	Building contact forms

	Building custom forms

	Contributing
	Reporting issues

	Coding style

	Static analysis

	Troubleshooting
	Empty caches manually for an environment

	Problem with entities and Doctrine cache?

First steps

	Requirements
	Roadiz is a Symfony application

	Using Docker as a development and production environment

	Create a new Roadiz project
	Generate JWT private and public keys

	Install database

	Manual configuration
	Choose your inheritance model

	Themes (compatibility with v1.x)

	Solr endpoint

	Reverse proxy cache invalidation

	Entities paths

	Configure mailer

	Images processing

	Enable Two-factor authentication

	OpenID SSO authentication

	Console commands

	Upgrading
	Upgrading from Roadiz v2.1 to v2.2

Requirements

Roadiz is a Symfony application running with PHP. You can follow regular Symfony requirements [https://symfony.com/doc/5.4/setup.html#technical-requirements] to
optimize your local or production setup.
Roadiz requires an HTTP server for static assets and SSH access with out/ingoing allowed connections.
Here is a short summary of mandatory elements before installing Roadiz:

	Nginx or Apache, with a dedicated virtual host as described below.

	PHP 8.1+ required, 8.2 recommended

	Install theses PHP extensions (which are installed and enabled by default in most PHP installations): JSON, Intl, cURL, MBString, Ctype, iconv, PCRE, Session, Zip, SimpleXML, and Tokenizer;

	Your php.ini needs to have the date.timezone setting

	You need to have at least version 2.6.21 of libxml

	PHP OPcache

	php.ini recommended settings

	short_open_tag = Off

	magic_quotes_gpc = Off

	register_globals = Off

	session.auto_start = Off

	MariaDB 10.5.2+ or MySQL 8.0+ database with JSON_* functions support

	Install Composer [https://getcomposer.org/download/], which is used to install PHP packages.

	Git

Roadiz is a Symfony application

Roadiz is not meant to be deployed directly on a production server right out-of-the-box, it is a Symfony application that you must configure and customize on your development environment then commit your own project repository configuration, migrations. Then you will be able to deploy it using your preferred method (SFTP / SSH / Git / Docker). Remember that as you would do with any Symfony app, you’ll have to clear cache, run migrations and other stuff each time you deploy to a new environment. This may require a SSH access to your production env or building a Docker image with a custom entrypoint script.

Using Docker as a development and production environment

Roadiz and Symfony development and production environments heavily rely on Docker [https://docs.docker.com/get-started/]
and docker-compose [https://docs.docker.com/compose/] because it eases up development and deployments stages using tools such as Gitlab or Github Actions. We recommend creating Docker images containing all your project sources and dependencies.

You can use our official Docker images [https://hub.docker.com/r/roadiz/php82-fpm-alpine] with PHP-FPM and Nginx already setup for you.
We recommend that you create your own Docker image based on this official one.

	https://hub.docker.com/r/roadiz/php82-fpm-alpine PHP-FPM 8.2 container ready for Roadiz and Symfony apps. Used for main application, async workers and cron jobs.

	https://hub.docker.com/r/roadiz/nginx-alpine Nginx container ready for Roadiz and Symfony apps. Used for static assets and proxying to PHP-FPM container.

docker-compose is meant to be used on the host machine (especially on Windows and macOs hosts). Docker is not mandatory if you prefer to install PHP and a web server directly on your host, just follow official Symfony instructions : https://symfony.com/doc/current/setup.html#technical-requirements

One container per process

Since Roadiz v2.1, we recommend separating processes into different docker containers. This allows you to scale each process independently. For example, you can have multiple PHP-FPM containers running your application, but only one Nginx container serving static assets. You can also have multiple PHP-FPM containers running your application, but only one Redis container for your cache. This allows you to scale each process independently.

Create a new Roadiz project

For new projects Roadiz can be easily setup using create-project command and our Skeleton.

Create a new Roadiz project
composer create-project roadiz/skeleton my-website
cd my-website
Create a local Dotenv to store your secrets
cp .env .env.local
Edit your docker-compose parameter in .env to
fit your development environment (OS, UID).
.env file will be tracked by Git
#
Initialize your Docker environment
docker-compose build
docker-compose up -d --force-recreate

Warning

Roadiz and Symfony development and production environments heavily rely on Docker [https://docs.docker.com/get-started/]
and docker-compose [https://docs.docker.com/compose/]. We recommend you to learn these awesome tools if you’re not
using them yet.
You still can use Roadiz without Docker, but you will have to install and configure a PHP environment, MySQL database, and a web server. If you are not using docker or docker-compose, just ignore docker-compose exec -u www-data app prefix in the following commands.

Note

Keep in mind that Roadiz v2 is a complete rewrite to become a true Symfony Bundle, it is true a Symfony app and behaves like that.
Roadiz v2 is meant to be used as a headless CMS with API Platform. But you still can use Controllers and Twig templates, but there is no more theme logic, just Symfony Bundles and your own code (in ./src folder).

Composer will prompt you if you want to can versioning history. Choose the default answer no as we definitely
want to replace roadiz/skeleton Git with our own versioning. Then you will be able to customize every files
in your projects and save them using Git, not only your theme. Of course we added a default .gitignore file to
prevent your configuration setting and entry points to be committed in your Git history. That way you can have
different configuration on development and on your production server without bothering about merge conflicts.

Generate JWT private and public keys

When using composer create-project command, you should have JWT secret and certificate automatically generated.
If not, you can generate them using the following commands:

Generate Symfony secrets
docker-compose exec -u www-data app bin/console secrets:generate-keys;
Set a random passphrase for Application secret and JWT keys
docker-compose exec -u www-data app bin/console secrets:set APP_SECRET --random;
docker-compose exec -u www-data app bin/console secrets:set JWT_PASSPHRASE --random;
Use built-in command to generate your key pair
docker-compose exec -u www-data app bin/console lexik:jwt:generate-keypair;

Install database

Create and migrate Roadiz database schema
docker-compose exec -u www-data app bin/console doctrine:migrations:migrate
Migrate any existing data types
docker-compose exec -u www-data app bin/console app:migrate
Install base Roadiz fixtures, default translation, roles and settings
docker-compose exec -u www-data app bin/console install
Stop workers to force restart them
docker compose exec -u www-data app php bin/console messenger:stop-workers
Clear cache
docker-compose exec -u www-data app bin/console cache:clear
Create your admin account
docker-compose exec -u www-data app bin/console users:create -m username@roadiz.io -b -s username

Then connect to http://localhost:${YOUR_PORT}/rz-admin to access your freshly-created Roadiz backoffice.

Note

If you setup Traefik [https://doc.traefik.io/traefik/] on your local environment, you can reach your Roadiz app using your domain.test
test domain name without specifying a non-default port. You have to change HOSTNAME dot-env variable and
change your local DNS to point domain.test to 127.0.0.1.
The easiest way is to add 127.0.0.1 domain.test to your /etc/hosts file.

Manual configuration

Roadiz is a full-stack Symfony application. It follows its configuration scheme as described in
https://symfony.com/doc/5.4/configuration.html

Choose your inheritance model

Roadiz main feature is all about its polymorphic document model which is mapped on a relational database. This requires a
challenging structure which can be lead to some performance bottlenecks when dealing with more than 20-30 node-types.
So we made the data inheritance model configurable to allow switching to single_table [https://www.doctrine-project.org/projects/doctrine-orm/en/2.7/reference/inheritance-mapping.html#single-table-inheritance] scheme which will be more performant
if you need lots of node-types. However Single class model will drop support for fields with the same name but
not the same type because all node-type fields will be created in the same SQL table.

If you really need to mix field types, we advise you to keep the original joined table [https://www.doctrine-project.org/projects/doctrine-orm/en/2.7/reference/inheritance-mapping.html#class-table-inheritance] inheritance type which creates a dedicated SQL table for each node-type. Joined table inheritance can be very useful
with a small number of node-type (max. 20) and very different fields. But its main drawback is that Roadiz needs to LEFT JOIN
every node-type table for each node-source query, unless you specify one node-type criteria.

You can configure Doctrine strategy for NodesSources inheritance classes in config/packages/roadiz_core.yaml:

config/packages/roadiz_core.yaml
roadiz_core:
 inheritance:
 # type: joined
 type: single_table

	Joined class inheritance: joined

	Single table inheritance: single_table

Warning

If you change this setting after creating content in your website, all node-sources data will be lost.

Themes (compatibility with v1.x)

Themes are statically registered into Roadiz configuration for better performances
and delaying database usage. You have to register any front-end theme in your config/packages/roadiz_compat.yaml file.
Theme priority is not handled here but in each of your themes by overriding static $priority value;

config/packages/roadiz_compat.yaml
roadiz_compat:
 themes:
 -
 classname: \Themes\DefaultTheme\DefaultThemeApp
 hostname: '*'
 routePrefix: ''
 -
 classname: \Themes\FooBarTheme\FooBarThemeApp
 hostname: 'foobar.test'
 routePrefix: ''

You can define hostname specific themes and add a route-prefix for your routing. Defaults values
are '*' for the hostname and '' (empty string) for the route-prefix.

Warning

No theme configuration will lead into a 404 error on your website home page. But you will still have
access to the back-office which is now hard-registered into Roadiz configuration.

Solr endpoint

Roadiz can use an Apache Solr search-engine to index nodes-sources.
Add this to your config/packages/roadiz_core.yaml to link your CMS to your Solr server:

config/packages/roadiz_core.yaml
roadiz_core:
 solr:
 endpoint:
 localhost:
 host: "localhost"
 port: "8983"
 path: "/"
 core: "mycore"
 timeout: 3
 username: ""
 password: ""

Roadiz CLI command can easily handle Solr index. Just type ./bin/console solr:check to get
more information.

Reverse proxy cache invalidation

Roadiz can request cache invalidation to external and internal cache proxies such as internal
Symfony AppCache or a Varnish instance. If configured, Roadiz will create a BAN request
to each configured proxy when user clears back-office caches, and it will create a PURGE request
on each node-source update event using first reachable node-source URL.

config/packages/roadiz_core.yaml
roadiz_core:
 reverseProxyCache:
 frontend:
 default:
 host: '%env(string:VARNISH_HOST)%'
 domainName: '%env(string:VARNISH_DOMAIN)%'

Note

Make sure you configured your external reverse proxy [https://github.com/roadiz/roadiz/blob/develop/samples/varnish_default.vcl]
in order to receive and handle BAN and PURGE HTTP requests.

With API Platform you also need to configure http_cache invalidation section:

config/packages/api_platform.yaml
api_platform:
 http_cache:
 invalidation:
 enabled: true
 varnish_urls: ['%env(VARNISH_URL)%']

Cloudflare proxy cache

If you are using Cloudflare as a reverse proxy cache, you can configure Roadiz to send requests to Cloudflare
to purge all items or files (when editing a node-source). You need to gather following information:

	Cloudflare zone identifier

	Cloudflare API credentials (Bearer token or email + auth-key)

Then you can configure Roadiz with Bearer token:

config/packages/roadiz_core.yaml
roadiz_core:
 reverseProxyCache:
 frontend: []
 cloudflare:
 zone: cloudflare-zone
 bearer: ~

Or with your Email and AuthKey:

config/packages/roadiz_core.yaml
roadiz_core:
 reverseProxyCache:
 frontend: []
 cloudflare:
 zone: cloudflare-zone
 email: ~
 key: ~

Note

Roadiz uses Purge all files and Purge Files by URL entry points: https://api.cloudflare.com/#zone-purge-all-files
which are available on all Cloudflare plans.

Entities paths

Roadiz uses Doctrine to map object entities to database tables.

config/packages/doctrine.yaml
doctrine:
 orm:
 auto_generate_proxy_classes: true
 default_entity_manager: default
 entity_managers:
 # Put `logger` entity manager first to select it as default for Log entity
 logger:
 naming_strategy: doctrine.orm.naming_strategy.underscore_number_aware
 mappings:
 ## Just sharding EM to avoid having Logs in default EM
 ## and flushing bad entities when storing log entries.
 RoadizCoreLogger:
 is_bundle: false
 type: attribute
 dir: '%kernel.project_dir%/vendor/roadiz/core-bundle/src/Logger/Entity'
 prefix: 'RZ\Roadiz\CoreBundle\Logger\Entity'
 alias: RoadizCoreLogger
 default:
 dql:
 string_functions:
 JSON_CONTAINS: Scienta\DoctrineJsonFunctions\Query\AST\Functions\Mysql\JsonContains
 naming_strategy: doctrine.orm.naming_strategy.underscore_number_aware
 auto_mapping: true
 mappings:
 ## Keep RoadizCoreLogger to avoid creating different migrations since we are using
 ## the same database for both entity managers. Just sharding EM to avoid
 ## having Logs in default EM and flushing bad entities when storing log entries.
 RoadizCoreLogger:
 is_bundle: false
 type: attribute
 dir: '%kernel.project_dir%/vendor/roadiz/core-bundle/src/Logger/Entity'
 prefix: 'RZ\Roadiz\CoreBundle\Logger\Entity'
 alias: RoadizCoreLogger
 RoadizCoreBundle:
 is_bundle: true
 type: attribute
 dir: 'src/Entity'
 prefix: 'RZ\Roadiz\CoreBundle\Entity'
 alias: RoadizCoreBundle
 RZ\Roadiz\Core:
 is_bundle: false
 type: attribute
 dir: '%kernel.project_dir%/lib/Models/src/Core/AbstractEntities'
 prefix: 'RZ\Roadiz\Core\AbstractEntities'
 alias: AbstractEntities
 App\GeneratedEntity:
 is_bundle: false
 type: attribute
 dir: '%kernel.project_dir%/src/GeneratedEntity'
 prefix: 'App\GeneratedEntity'
 alias: App\GeneratedEntity
 App:
 is_bundle: false
 type: attribute
 dir: '%kernel.project_dir%/src/Entity'
 prefix: 'App\Entity'
 alias: App
 gedmo_loggable:
 type: attribute
 prefix: Gedmo\Loggable\Entity\MappedSuperclass
 dir: "%kernel.project_dir%/vendor/gedmo/doctrine-extensions/src/Loggable/Entity/MappedSuperclass"
 alias: GedmoLoggableMappedSuperclass
 is_bundle: false

Use type: attribute or type: annotation according to your Doctrine mapping type.

Configure mailer

Roadiz uses Symfony Mailer to send emails.

https://symfony.com/doc/5.4/mailer.html#transport-setup

Note

Pay attention that many external SMTP services (Mandrill, Mailjet…) only accept email from validated domains.
So make sure that your application uses a known From: email sender not to be blacklisted or blocked
by these services.
If you need your emails to be replied to an anonymous address, use ReplyTo: header instead.

Images processing

Roadiz use Intervention Request Bundle [https://github.com/rezozero/intervention-request-bundle] to automatically
create a lower quality version of your image if they are too big and offer on-the-fly image resizing and optimizing.

config/packages/rz_intervention_request.yaml
parameters:
 env(IR_DEFAULT_QUALITY): '90'
 env(IR_MAX_PIXEL_SIZE): '1920'
 ir_default_quality: '%env(int:IR_DEFAULT_QUALITY)%'
 ir_max_pixel_size: '%env(int:IR_MAX_PIXEL_SIZE)%'

rz_intervention_request:
 driver: 'gd'
 default_quality: '%ir_default_quality%'
 max_pixel_size: '%ir_max_pixel_size%'
 cache_path: "%kernel.project_dir%/public/assets"
 files_path: "%kernel.project_dir%/public/files"
 jpegoptim_path: /usr/bin/jpegoptim
 pngquant_path: /usr/bin/pngquant
 subscribers: []

Additional Intervention Request subscribers

Any Intervention Request subscriber can be added to configuration with its classname
and its constructor arguments. Here is an example with WatermarkListener which will
print some text on all your images.

rz_intervention_request:
 # List additional Intervention Request subscribers
 subscribers:
 - class: "AM\\InterventionRequest\\Listener\\WatermarkListener"
 args:
 - 'Copyright 2017'
 - 3
 - 50
 - "#FF0000"

Use kraken.io to reduce drastically image sizes

Since you can add Intervention Request subscribers, we created a useful one that sends
every images to kraken.io [https://kraken.io/] services to shrink them. Once you’ve configured it,
do not forget to empty your caches and image caches to see changes.

rz_intervention_request:
 # List additional Intervention Request subscribers
 subscribers:
 - class: "AM\\InterventionRequest\\Listener\\KrakenListener"
 args:
 - "your-api-key"
 - "your-api-secret"
 - true

Warning

Take note that each generated image is sent to kraken.io servers. It can generate some overhead
time on the first time you request an image.

Enable Two-factor authentication

Roadiz can use Two-factor authentication to secure your back-office access. You need to install
composer require roadiz/two-factor-bundle and configure it in your config/packages/scheb_2fa.yaml and
config/packages/security.yaml files.

See Two-factor authentication bundle documentation [https://github.com/roadiz/two-factor-bundle/tree/develop#configuration].

OpenID SSO authentication

Roadiz can use OpenID authentication to allow your users to log in with their Google account.

It supports 2 modes:

	
	Requires local user: Users must have a local account to be able to log in with OpenID.

	This is the default mode.

	
	No local user required: Users can log in with OpenID without having a local account. A virtual

	account will be created for them with their email address as username and roles listed in granted_roles.
With this mode, you cannot use Preview mode as it requires a local user.

For both modes, you can restrict users to a specific domain with hosted_domain parameter.

config/packages/roadiz_rozier.yaml
roadiz_rozier:
 open_id:
 # Verify User info in JWT at each login
 verify_user_info: false
 # Standard OpenID autodiscovery URL, required to enable OpenId login in Roadiz CMS.
 discovery_url: '%env(string:OPEN_ID_DISCOVERY_URL)%'
 # For public identity providers (such as Google), restrict users emails by their domain.
 hosted_domain: '%env(string:OPEN_ID_HOSTED_DOMAIN)%'
 # OpenID identity provider OAuth2 client ID
 oauth_client_id: '%env(string:OPEN_ID_CLIENT_ID)%'
 # OpenID identity provider OAuth2 client secret
 oauth_client_secret: '%env(string:OPEN_ID_CLIENT_SECRET)%'
 requires_local_user: false
 granted_roles:
 - ROLE_USER
 - ROLE_BACKEND_USER
 - ROLE_ACCESS_VERSIONS
 - ROLE_ACCESS_DOCTRINE_CACHE_DELETE
 - ROLE_ACCESS_DOCUMENTS
 - ROLE_ACCESS_DOCUMENTS_LIMITATIONS
 - ROLE_ACCESS_DOCUMENTS_DELETE
 - ROLE_ACCESS_DOCUMENTS_CREATION_DATE
 - ROLE_ACCESS_NODES
 - ROLE_ACCESS_NODES_DELETE
 - ROLE_ACCESS_NODES_SETTING
 - ROLE_ACCESS_NODES_STATUS
 - ROLE_ACCESS_REDIRECTIONS
 - ROLE_ACCESS_TAGS
 - ROLE_ACCESS_TAGS_DELETE
 - ROLE_ACCESS_CUSTOMFORMS
 - ROLE_ACCESS_CUSTOMFORMS_DELETE
 - ROLE_ACCESS_CUSTOMFORMS_RETENTION
 - ROLE_ACCESS_ATTRIBUTES
 - ROLE_ACCESS_ATTRIBUTES_DELETE
 - ROLE_ACCESS_NODE_ATTRIBUTES
 - ROLE_ACCESS_SETTINGS
 - ROLE_ACCESS_LOGS
 - ROLE_ACCESS_USERS
 - ROLE_ACCESS_USERS_DELETE
 - ROLE_ACCESS_GROUPS
 - ROLE_ACCESS_TRANSLATIONS

Console commands

Roadiz can be executed as a simple CLI tool using your SSH connection. This is useful to
handle basic administration tasks with no need of backoffice administration.

./bin/console

If your system is not configured to have php located in /usr/bin/php use it this way:

php ./bin/console

Default command with no arguments will show you the available commands list. Each command has its
own parameters. You can use the argument --help to get more information about each tool:

./bin/console install --help

We even made Doctrine CLI tools directly available from Roadiz Console. Be careful, these are powerful
commands which can alter your database and make you lose precious data. Especially when you will need to update
your database schema after a Theme or a Core update. Always make a database back-up before any Doctrine operation.

Upgrading

Note

Always do a database backup before upgrading. You can use the mysqldump or pg_dump tools
to quickly export your database as a file.

	With a MySQL server: mysqldump -u[user] -p[user_password] [database_name] > dumpfilename.sql

	With a PostgreSQL server: pg_dump -U [user] [database_name] -f dumpfilename.sql

Use Composer to update dependencies or Roadiz itself with Standard or Headless editions, make sure that
your Roadiz version constraint is set in your project composer.json file, then:

composer update -o;

Run database registered migrations (some migrations will be skipped according to your database type). Doctrine
migrations are the default method to upgrade all none-node-type related entities:

bin/console doctrine:migrations:migrate;

In order to avoid losing sensible node-sources data. You should
regenerate your node-source entities classes files:

bin/console generate:nsentities;

Then check if there is no pending SQL changes due to your Roadiz node-types, this should be addressed with a doctrine:migrations:migrate
but you can check it with:

bin/console doctrine:schema:update --dump-sql;
Upgrade node-sources tables if necessary
bin/console doctrine:schema:update --dump-sql --force;

Then, clear your app caches:

Clear cache for each environment
bin/console cache:clear -e dev
bin/console cache:clear -e prod
bin/console cache:pool:clear cache.global_clearer
bin/console messenger:stop-workers

Note

If you are using a runtime cache like OPcache or APCu, you’ll need to purge cache manually
because it can’t be done from a CLI interface as they are shared cache engines. As a last
chance try, you can restart your php-fpm service.

Upgrading from Roadiz v2.1 to v2.2

Here is an extract for the Changelog [https://github.com/roadiz/core-bundle-dev-app/blob/main/CHANGELOG.md#v220-2023-12-12]

	Doctrine migrations are now the default method to upgrade all node-type related entities.
You should run bin/console doctrine:migrations:migrate after updating your Roadiz dependencies.

	Roadiz updated to API Platform new version and Metadata scheme. You must rewrite your api resource YAML
files to match new scheme. See API Platform documentation [https://api-platform.com/docs/core/upgrade-guide/]. You
can remove any ns_**.yml api resource files then run bin/console generate:api-resources to generate them again. But any
custom serialization groups will be lost.

	All node-type updates after Roadiz 2.2 will be versioned and will generate a Doctrine migration file. You may generate
a Migration file with any existing node-type and add it without executing it if you want to keep a clean migration path, for
new fresh website installs.

	roadiz/models entities path changed from %kernel.project_dir%/vendor/roadiz/models/src/Roadiz/Core/AbstractEntities to %kernel.project_dir%/lib/Models/src/Core/AbstractEntities

	Logger is now handled by a different entity-manager to avoid flushing non-valid entities when persisting log entries into
database.

orm:
 auto_generate_proxy_classes: true
 default_entity_manager: default
 entity_managers:
 # Put `logger` entity manager first to select it as default for Log entity
 logger:
 naming_strategy: doctrine.orm.naming_strategy.underscore_number_aware
 mappings:
 ## Just sharding EM to avoid having Logs in default EM
 ## and flushing bad entities when storing log entries.
 RoadizCoreLogger:
 is_bundle: false
 type: attribute
 dir: '%kernel.project_dir%/vendor/roadiz/core-bundle/src/Logger/Entity'
 prefix: 'RZ\Roadiz\CoreBundle\Logger\Entity'
 alias: RoadizCoreLogger
 default:
 dql:
 string_functions:
 JSON_CONTAINS: Scienta\DoctrineJsonFunctions\Query\AST\Functions\Mysql\JsonContains
 naming_strategy: doctrine.orm.naming_strategy.underscore_number_aware
 auto_mapping: true
 mappings:
 ## Keep RoadizCoreLogger to avoid creating different migrations since we are using
 ## the same database for both entity managers. Just sharding EM to avoid
 ## having Logs in default EM and flushing bad entities when storing log entries.
 RoadizCoreLogger:
 is_bundle: false
 type: attribute
 dir: '%kernel.project_dir%/vendor/roadiz/core-bundle/src/Logger/Entity'
 prefix: 'RZ\Roadiz\CoreBundle\Logger\Entity'
 alias: RoadizCoreLogger
 App:
 is_bundle: false
 type: attribute
 dir: '%kernel.project_dir%/src/Entity'
 prefix: 'App\Entity'
 alias: App
 # ...

Node system

	Node-types, nodes-sources and nodes
	What is a Node-type

	Node-sources and translations

	Node-type fields
	Simple data

	Single and multiple geographic coordinates

	Markdown options

	Virtual data

	Complex data

	Universal fields

	YAML field

	Many to many and Many to one joins

	Single and multiple provider

	Custom collection

	Handling nodes and their hierarchy
	Hierarchy

	Visibility

	Publication workflow

	Generating paths and url

Node-types, nodes-sources and nodes

This part is the most important part of Roadiz. Quite everything in your website will be a node.

Let’s check this simple node schema before explain it.

[image: ../../_images/node-struct.svg]Now, it’s time to explain how it’s working!

What is a Node-type

A node-type is the blueprint for your node-source.
It will contain all fields that Roadiz will use to generate an extended node-source class.

[image: ../../_images/NSPage-php.svg]

For example, a node-type “Page” will contain “content” and “header image” fields.
The “title” field is always available as it is hard-coded in NodesSources class.
After saving your node-type, Roadiz generates a NSPage class which extends the NodesSources class.
You will find it in the gen-src/GeneratedNodeSources (or app/gen-src/GeneratedNodeSources with Roadiz Standard edition).
Then Roadiz calls Doctrine update tool to migrate your database schema.
Do not modify the generated class. You’ll have to update it by the backend interface.

Here is a schema to understand how node-types can define custom fields into node-sources:

[image: ../../_images/NSPage-schema.svg]

Most of node-types management will be done in your backoffice interface. You will be able to
create, update node-types objects and each of their node-type fields independently. But if you prefer,
you can use CLI commands to create types and fields. With Roadiz CLI commands you get several tools to manage node-types.
We really encourage you to check the commands with --help argument, as following:

bin/console nodetypes:add-fields
bin/console nodetypes:create
bin/console nodetypes:delete
bin/console nodetypes:list

Keep in mind that each node-type or node-type fields operation require a database update as Doctrine have to create
a specific table per node-type. Do not forget to execute bin/console doctrine:schema:update tools to perform
updates. It’s very important to understand that Doctrine needs to see your node-types generated classes before
upgrading database schema. If they don’t exist, it won’t able to create your custom types tables, or worst, it could
delete existing data since Doctrine won’t recognize specific tables.

Now let’s have a look on node-sources.

Node-sources and translations

Once your node-type created, its definition is stored in database in node_types and node_type_fields tables.
This informations will be only used to build your node-sources edition forms in backoffice and to build a custom database table.

Inheritance mapping

With Roadiz, each node-types data (called node-sources) is stored in a different table prefixed with ns_. When you create a Page
node-type with 2 fields (content and excerpt), Roadiz tells Doctrine to build a ns_page table with 2 columns and one primary key column inherited from nodes_sources table. It’s called inheritance mapping: your ns_page table extends nodes_sources table and when you are querying a Page from database, Doctrine mix the data coming from these 2 tables to create a complete node-source.

At the end your node-source Page won’t contain only 2 fields but many more as NodesSources entity offers title, metaTitle,
metaDescription, metaKeywords and others useful data-fields which can be used among all node-types.

Translations

Node-sources inheritance mapping is not only used to customize data but to make data translations available. As you saw in the first picture, each nodes can handle many node-sources, one per translation.

Node-type fields

Roadiz can handle many types of node-type fields. Here is a complete list:

Note

Title, meta-title, meta-description and keywords are always available
since they are stored directly inside NodesSources entity. Then you will be
sure to always have a title no matter the node-type you are using.

Simple data

This following fields stores simple data in your custom node-source database table.

	Single-line text

	Date

	Date and time

	Basic text

	Markdown text

	Boolean

	Integer number

	Decimal number

	Email

	Color

	Single geographic coordinates

	Multiple geographic coordinates

	JSON code

	CSS code

	Country code (ISO 3166-1 alpha-2)

	YAML code

	Many to many join

	Many to one join

	Single relationship using a provider

	Multiple relationship using a provider

	Custom collection

[image: ../../_images/field-types.png]

Single and multiple geographic coordinates

Geographic coordinates are stored in JSON format in your database using GeoJSON [https://geojson.org/] schema:

	A single point will be stored as a GeoJSON feature in order to hold additional properties such as zoom,

	Multiple points will be stored as a GeoJSON feature collection

By default, Roadiz back-office uses Leaflet library with Open Street Map for tiles rendering and basic geo-coding features.

Markdown options

You can restrict Markdown fields buttons using the following YAML configuration:

allow_h2: false
allow_h3: false
allow_h4: false
allow_h5: false
allow_h6: false
allow_bold: false
allow_italic: false
allow_blockquote: false
allow_list: false
allow_nbsp: false
allow_nb_hyphen: false
allow_image: false
allow_return: false
allow_link: false
allow_hr: false
allow_preview: false

Virtual data

Virtual types do not really store data in node-source table. They display custom
widgets in your editing page to link documents, nodes or custom-forms with
your node-source.

	Documents

	Nodes references

	Custom form

Complex data

These fields types must be created with default values (comma separated) in order to
display available default choices for “select-box” types:

	Single choice

	Multiple choices

	Children nodes

Children node field type is a special virtual field that will display a custom
node-tree inside your editing page. You can add quick-create buttons by listing
your node-types names in default values input, comma separated.

Universal fields

If you need a field to hold exactly the same data for all translations, you can
set it as universal. For example for documents, numeric and boolean data that
do not change from one language to another.

It will duplicate data at each save time from default translation
to others. It will also hide the edit field from non-default translation to avoid
confusion.

YAML field

When you use YAML field type, you get an additional method to return your code already parsed.
If your field is named data, your methods will be generated in your NSEntity as getData() and getDataAsObject().

	getData() method will return your YAML code as string.

	getDataAsObject() will return a mixed data,array or stdObject according to your code formatting. This method will throw a \Symfony\Component\Yaml\Exception\ParseException if your YAML code is not valid.

Many to many and Many to one joins

You can create custom relations between your node-source and whatever Doctrine
entities in Roadiz or in your theme.

You must fill the default values field for these two types.

Entity class name
classname: Themes\MyTheme\Entities\City
Displayable is the method used to display entity name
displayable: getName
Same as Displayable but for a secondary information
alt_displayable: getZipCode
Searchable entity fields
searchable:
 - name
 - slug
orderBy:
 - field: slug
 direction: ASC

You can use a custom proxy entity to support persisting position on your relation. Roadiz will generate a one-to-many
relationship with proxy entity instead of a many-to-many.
In this scenario you are responsible for creating and migrating Themes\MyTheme\Entities\PositionedCity entity. If you are migrating from a non-proxied many-to-many relation, you should keep the same table and field names to keep data intact.

Entity class name
classname: Themes\MyTheme\Entities\City
Displayable is the method used to display entity name
displayable: getName
Same as Displayable but for a secondary information
alt_displayable: getZipCode
Searchable entity fields
searchable:
 - name
 - slug
This order will only be used for explorer
orderBy:
 - field: slug
 direction: ASC
Use a proxy entity
proxy:
 classname: Themes\MyTheme\Entities\PositionedCity
 self: nodeSource
 relation: city
 # This order will preserve position
 orderBy:
 - field: position
 direction: ASC

Single and multiple provider

The generic provider type allow you to fetch every data you want through a Provider
class in your theme. This can be really useful if you need to fetch items from an external API
and to reference them in your nodes-sources.

Imagine that you want to link your page with an Instagram post. You’ll have to create a class that
extends Themes\Rozier\Explorer\AbstractExplorerProvider and configure it in your field:

classname: Themes\MyTheme\Provider\ExternalApiProvider

This provider will implement getItems, getItemsById and other methods from
ExplorerProviderInterface in order to be able to display your Instagram posts in
Roadiz explorer widget and to find your selected items back.
Each Instagram post will be wrapped in a Themes\Rozier\Explorer\AbstractExplorerItem that
will map your custom data to the right fields to be showed in Roadiz back-office.

You’ll find an implementation example in Roadiz with Themes\Rozier\Explorer\SettingsProvider and
Themes\Rozier\Explorer\SettingExplorerItem. These classes do not fetch data from an API but from your
database using EntityListManager.

Single and multiple provider types can accept additional options too. If you want to make your provider
configurable at runtime you can pass options in your field configuration.

classname: Themes\MyTheme\Provider\ExternalApiProvider
options:
 - name: user
 value: me
 - name: access_token
 value: xxxxx

Then you must override your provider’ configureOptions method to add which options are allowed.

use Symfony\Component\OptionsResolver\OptionsResolver;

/**
 * @param OptionsResolver $resolver
 */
public function configureOptions(OptionsResolver $resolver)
{
 $resolver->setDefaults([
 'page' => 1,
 'search' => null,
 'itemPerPage' => 30,
 // add more default options here
 'user' => 'me',
]);
 // You can required options
 $resolver->setRequired('access_token');
}

Custom collection

Last but not least, you can create a custom collection field to store read-only data using
a dedicated Symfony AbstractType.

You must fill the default values field for this type:

AbstractType class name
entry_type: Themes\MyTheme\Form\FooBarType

You must understand that custom collection data will be stored as JSON array in
your database. So you won’t be able to query your node-source using this data.

In your FooBarType, you’ll be able to use Symfony standard fields types and
Roadiz non-virtual fields too such as MarkdownType, JsonType, YamlType.

Handling nodes and their hierarchy

By default, if you use Entities API methods or traversing Twig filters,
Roadiz will automatically handle security parameters such as node.status and
preview mode.

// Secure method to get node-sources
// Implicitly check node.status
$this->nodeSourceApi->getBy([
 'node.nodeType' => $blogPostType,
 'translation' => $translation,
], [
 'publishedAt' => 'DESC'
]);

This first code snippet is using Node-source API. This will automatically check if
current user is logged-in and if preview mode is ON to display or not unpublished nodes.

// Insecure method to get node-sources
// Doctrine raw method will get all node-sources
$this->managerRegistry->getRepository(NSBlogPost::class)->findBy([], [
 'publishedAt' => 'DESC',
 'translation' => $translation,
]);

This second code snippet uses standard Doctrine Entity Manager to directly grab
node-sources by their entity class. This method does not check any security and will
return every node-sources, even unpublished, archived and deleted ones.

Hierarchy

To traverse node-sources hierarchy, the easier method is to use Twig filters
on your nodeSource entity. Filters will implicitly set translation from
origin node-source.

{% set children = nodeSource|children %}
{% set nextSource = nodeSource|next %}
{% set prevSource = nodeSource|previous %}
{% set parent = nodeSource|parent %}

{% set children = nodeSource|children({
 'node.visible': true
}) %}

Warning

All these filters will take care of publication status and translation, but not publication date-time neither visibility.

{% set children = nodeSource|children({
 'node.visible': true,
 'publishedAt': ['>=', date()],
}, {
 'publishedAt': 'DESC'
}) %}

{% set nextVisible = nodeSource|next({
 'node.visible': true
}) %}

If you need to traverse node-source graph from your controllers you can use
the Entity API. Moreover, Nodes-sources API allows you to filter using custom criteria if you choose a specific NodeType.

$children = $this->nodeSourceApi->getBy([
 'node.parent' => $nodeSource,
 'node.visible' => true,
 'publishedAt' => ['>=', new \DateTime()],
 'translation' => $nodeSource->getTranslation(),
],[
 'publishedAt' => 'DESC'
]);

Warning

Browsing your node graph (calling children or parents) could be very greedy and unoptimized if you have lots of node-types. Internally Doctrine will inner-join every nodes-sources tables to perform polymorphic hydration. So, make sure you filter your queries by one NodeType as much as possible with nodeSourceApi and node.nodeType criteria.

// Here Doctrine will only join NSPage table to NodesSources
$children =$this->nodeSourceApi->getBy([
 'node.nodeType' => $this->nodeTypesBag->get('Page'),
 'node.parent' => $nodeSource,
 'node.visible' => true,
 'publishedAt' => ['>=', new \DateTime()],
 'translation' => $nodeSource->getTranslation(),
],[
 'publishedAt' => 'DESC'
]);

Visibility

There are two parameters that you must take care of in your themes and your
controllers, because they are not mandatory in all website cases:

	Visibility

	Publication date and time

For example, publication date and time won’t be necessary in plain text pages and
not timestampable contents. But we decided to add it directly in NodesSources
entity to be able to filter and order with this field in Roadiz back-office.
This was not possible if you manually create your own publishedAt as a node-type
field.

Warning

Pay attention that publication date and time (publishedAt) and visibility
(node.visible) does not prevent your node-source from being viewed
if you did not explicitly forbid access to its controller. This field is not
deeply set into Roadiz security mechanics.

If you need so, make sure that your node-type controller checks these two
fields and throws a ResourceNotFoundException if they’re not satisfied.

class BlogPostController extends MyAwesomeTheme
{
 public function indexAction(
 Request $request,
 Node $node = null,
 TranslationInterface $translation = null
) {
 $this->prepareThemeAssignation($node, $translation);

 $now = new DateTime("now");
 if (!$nodeSource->getNode()->isVisible() ||
 $nodeSource->getPublishedAt() < $now) {
 throw new ResourceNotFoundException();
 }

 return $this->render(
 'types/blogpost.html.twig',
 $this->assignation
);
 }
}

Publication workflow

Each Node state is handled by a Workflow to switch between the following 5 states:

States

	Node::DRAFT

	Node::PENDING

	Node::PUBLISHED

	Node::ARCHIVED

	Node::DELETED

Transitions

	review

	reject

	publish

	archive

	unarchive

	delete

	undelete

You cannot changes a Node status directly using its setter, you must use Roadiz main registry to perform
transition. This can prevent unwanted behaviours and you can track changes with events and guards:

$nodeWorkflow = $this->workflowRegistry->get($node);
if ($nodeWorkflow->can($node, 'publish')) {
 $nodeWorkflow->apply($node, 'publish');
}

Generating paths and url

You can use generateUrl() in your controllers to get a node-source’ path or url. In your Twig template, you can use path method as described in Twig section: twig-generate-paths.

use Symfony\Cmf\Component\Routing\RouteObjectInterface;

class BlogPostController extends MyAwesomeTheme
{
 public function indexAction(
 Request $request,
 Node $node = null,
 TranslationInterface $translation = null
) {
 $this->prepareThemeAssignation($node, $translation);

 // Generate a path for current node-source
 $path = $this->generateUrl(
 RouteObjectInterface::OBJECT_BASED_ROUTE_NAME,
 [RouteObjectInterface::ROUTE_OBJECT => $this->nodeSource]
);

 // Generate an absolute URL for current node-source
 $absoluteUrl = $this->generateUrl(
 RouteObjectInterface::OBJECT_BASED_ROUTE_NAME,
 [RouteObjectInterface::ROUTE_OBJECT => $this->nodeSource],
 UrlGeneratorInterface::ABSOLUTE_URL
);
 }
}

Overriding default node-source path generation

You can override default node-source path generation in order to use {{ path() }} method
in your Twig templates but with a custom logic. For example, you have a Link node-type
which purpose only is to link to an other node in your website. When you call path or URL
generation on it, you should prefer getting its linked node path, so you can listen
to RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesPathGeneratingEvent:class event and stop propagation to return
your linked node path instead of your link node path.

use GeneratedNodeSources\NSLink;
use Symfony\Component\EventDispatcher\EventDispatcherInterface;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesPathGeneratingEvent;

class LinkPathGeneratingEventListener implements EventSubscriberInterface
{
 public static function getSubscribedEvents(): array
 {
 return [
 NodesSourcesPathGeneratingEvent:class => ['onLinkPathGeneration']
];
 }

 /**
 * @param NodesSourcesPathGeneratingEvent $event
 * @param string $eventName
 * @param EventDispatcherInterface $dispatcher
 */
 public function onLinkPathGeneration(
 NodesSourcesPathGeneratingEvent $event,
 $eventName,
 EventDispatcherInterface $dispatcher
) {
 $nodeSource = $event->getNodeSource();

 if ($nodeSource instanceof NSLink) {
 if (filter_var($nodeSource->getExternalUrl(), FILTER_VALIDATE_URL)) {
 /*
 * If editor linked to an external link
 */
 $event->stopPropagation();
 $event->setComplete(true);
 $event->setContainsScheme(true); // Tells router not to prepend protocol and host to current URL
 $event->setPath($nodeSource->getExternalUrl());
 } elseif (count($nodeSource->getNodeReferenceSources()) > 0 &&
 null !== $linkedSource = $nodeSource->getNodeReferenceSources()[0]) {
 /*
 * If editor linked to an internal page through a node reference
 */
 /** @var FilterNodeSourcePathEvent $subEvent */
 $subEvent = clone $event;
 $subEvent->setNodeSource($linkedSource);
 /*
 * Dispatch a path generation again for linked node-source.
 */
 $dispatcher->dispatch($subEvent);
 /*
 * Fill main event with sub-event data
 */
 $event->setPath($subEvent->getPath());
 $event->setComplete($subEvent->isComplete());
 $event->setParameters($subEvent->getParameters());
 $event->setContainsScheme($subEvent->containsScheme());
 // Stop propagation AFTER sub-event was dispatched not to prevent it to perform.
 $event->stopPropagation();
 }
 }
 }
}

Building headless websites using API

Since Roadiz v2, headless development is default and is the most powerful way to build reactive websites and
applications. Roadiz is built on API Platform [https://api-platform.com/], and it exposes all main entities as
API Resources using DTO (data transfer objects) [https://api-platform.com/docs/core/dto/#using-data-transfer-objects-dtos]

[image: ../../_images/postman.png]
Consuming Roadiz API with Postman application is a great way to explore and test REST calls for your frontend app

	WebResponse concept
	Override WebResponse block walker

	Exposing node-types

	Serialization groups

We recommend using Rezo Zero Nuxt starter [https://github.com/rezozero/nuxt-starter] to build your frontend applications.
This starter is built to use Roadiz API and relies on dynamic routing and supports API redirections.

WebResponse concept

A REST-ful API will expose collection and item entry-points for each resource. But in both case, you need to know your
resource type or your resource identifier before executing your API call.
Roadiz introduces a special resource named WebResponse which can be called using a path query param in order
to reduce as much as possible API calls and address N+1 problem [https://restfulapi.net/rest-api-n-1-problem/].

GET /api/web_response_by_path?path=/contact

API will expose a WebResponse single item containing:

	An item

	Item breadcrumbs

	Head object

	Item blocks tree-walker

	Item realms

	and if blocks are hidden by Realm configuration

Note

Roadiz WebResponse is used in Rezo Zero Nuxt Starter [https://github.com/rezozero/nuxt-starter#dynamic-page-data-based-on-requestpath]
to populate all data during the asyncData() routine in _.vue page

{
 "@context": "/api/contexts/WebResponse",
 "@id": "/api/web_response_by_path?path=/contact",
 "@type": "WebResponse",
 "item": {
 "@id": "/api/pages/7",
 "@type": "Page",
 "content": "Magni deleniti ut eveniet. Aliquam aut et excepturi vitae placeat molestiae. Molestiae asperiores nihil sed temporibus quibusdam. Non magnam fuga at. sdf",
 "subTitle": null,
 "overTitle": null,
 "headerImage": [],
 "test": null,
 "pictures": [],
 "nodeReferences": [],
 "stickytest": false,
 "sticky": false,
 "customForm": [],
 "title": "Contact",
 "publishedAt": "2021-09-10T15:56:00+02:00",
 "metaTitle": "",
 "metaKeywords": "",
 "metaDescription": "",
 "users": [],
 "node": {
 "@type": "Node",
 "@id": "/api/nodes/7",
 "visible": true,
 "position": 3,
 "tags": []
 },
 "slug": "contact",
 "url": "/contact"
 },
 "breadcrumbs": {
 "@type": "Breadcrumbs",
 "@id": "_:14750",
 "items": []
 },
 "head": {
 "@type": "NodesSourcesHead",
 "@id": "_:14679",
 "googleAnalytics": null,
 "googleTagManager": null,
 "matomoUrl": null,
 "matomoSiteId": null,
 "siteName": "Roadiz dev website",
 "metaTitle": "Contact – Roadiz dev website",
 "metaDescription": "Contact, Roadiz dev website",
 "policyUrl": null,
 "mainColor": null,
 "facebookUrl": null,
 "instagramUrl": null,
 "twitterUrl": null,
 "youtubeUrl": null,
 "linkedinUrl": null,
 "homePageUrl": "/",
 "shareImage": null
 },
 "blocks": [],
 "realms": [],
 "hidingBlocks": false
}

Override WebResponse block walker

Imagine you have a block (ArticleFeedBlock) which should list latest news (Article). You can use tree-walker mechanism to fetch latest news and
expose them as if they were children of your article feed block. This requires to create a custom definition:

<?php

declare(strict_types=1);

namespace App\TreeWalker\Definition;

use App\GeneratedEntity\NSArticle;
use App\GeneratedEntity\NSArticleFeedBlock;
use Doctrine\ORM\Tools\Pagination\Paginator;
use RZ\Roadiz\CoreBundle\Api\TreeWalker\NodeSourceWalkerContext;
use RZ\Roadiz\CoreBundle\Entity\NodesSources;
use RZ\TreeWalker\Definition\ContextualDefinitionTrait;
use RZ\TreeWalker\Definition\StoppableDefinition;
use RZ\TreeWalker\WalkerInterface;

final class ArticleFeedBlockDefinition implements StoppableDefinition
{
 use ContextualDefinitionTrait;

 public function isStoppingCollectionOnceInvoked(): bool
 {
 return true;
 }

 /**
 * @param NodesSources $source
 * @param WalkerInterface $walker
 * @return array
 * @throws \Exception
 */
 public function __invoke(NodesSources $source, WalkerInterface $walker): array
 {
 if ($this->context instanceof NodeSourceWalkerContext) {
 $this->context->getStopwatch()->start(self::class);
 if (!$source instanceof NSArticleFeedBlock) {
 throw new \InvalidArgumentException('Source must be instance of ' . NSArticleFeedBlock::class);
 }

 $criteria = [
 'node.visible' => true,
 'publishedAt' => ['<=', new \DateTime()],
 'translation' => $source->getTranslation(),
 'node.nodeType' => $this->context->getNodeTypesBag()->get('Article')
];

 // Prevent Article feed to list root Article again
 $root = $walker->getRoot()->getItem();
 if ($root instanceof NSArticle) {
 $criteria['id'] = ['!=', $root->getId()];
 }

 if (null !== $source->getNode() && \count($source->getNode()->getTags()) > 0) {
 $criteria['tags'] = $source->getNode()->getTags();
 $criteria['tagExclusive'] = true;
 }

 $count = (int) ($source->getListingCount() ?? 4);

 $children = $this->context->getNodeSourceApi()->getBy($criteria, [
 'publishedAt' => 'DESC'
], $count);

 if ($children instanceof Paginator) {
 $iterator = $children->getIterator();
 if ($iterator instanceof \ArrayIterator) {
 $children = $iterator->getArrayCopy();
 } else {
 throw new \RuntimeException('Unexpected iterator type');
 }
 }

 $this->context->getStopwatch()->stop(self::class);

 return $children;
 }
 throw new \InvalidArgumentException('Context should be instance of ' . NodeSourceWalkerContext::class);
 }
}

Then create a definition factory which will be injected using Symfony autoconfigure tag roadiz_core.tree_walker_definition_factory.

roadiz_core.tree_walker_definition_factory tag must include a classname attribute which will be used to match your definition factory with the right node source class.

<?php

declare(strict_types=1);

namespace App\TreeWalker\Definition;

use App\GeneratedEntity\NSArticleFeedBlock;
use RZ\Roadiz\CoreBundle\Api\TreeWalker\Definition\DefinitionFactoryInterface;
use RZ\TreeWalker\WalkerContextInterface;
use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;

#[AutoconfigureTag(
 name:'roadiz_core.tree_walker_definition_factory',
 attributes: ['classname' => NSArticleFeedBlock::class]
)]
final class ArticleFeedBlockDefinitionFactory implements DefinitionFactoryInterface
{
 public function create(WalkerContextInterface $context, bool $onlyVisible = true): callable
 {
 return new ArticleFeedBlockDefinition($context);
 }
}

This way, all tree-walkers will be able to use your custom definition anytime a NSArticleFeedBlock is encountered.

You can debug all registered definition factories using bin/console debug:container --tag=roadiz_core.tree_walker_definition_factory command.

Retrieve common content

Now that we can fetch each page data, we need to get all unique content for building Menus, Homepage reference, headers, footers, etc.
We could extend our _WebResponse_ to inject theses common data to each request, but it would bloat HTTP responses, and
affect API performances.

For these common content, you can create a /api/common_content API endpoint in your project which will fetched only once in your
frontend application.

config/api_resources/common_content.yml
App\Api\Model\CommonContent:
 operations:
 getCommonContent:
 class: ApiPlatform\Metadata\Get
 method: 'GET'
 uriTemplate: '/common_content'
 read: false
 controller: App\Controller\GetCommonContentController
 pagination_enabled: false
 normalizationContext:
 enable_max_depth: true
 pagination_enabled: false
 groups:
 - get
 - common_content
 - web_response
 - walker
 - walker_level
 - children
 - children_count
 - nodes_sources_base
 - nodes_sources_default
 - urls
 - blocks_urls
 - tag_base
 - translation_base
 - document_display
 - document_folders

Note

Keep in mind that /api/common_content endpoint uses nodes_sources_base normalization group which will
only include essential node sources data. You can add more groups to include more data, such as nodes_sources_default
or nodes_sources_cta if you grouped some fields into a CTA label.

Then create you own custom resource to hold your menus tree-walkers and common content. Tree-walkers will be created using
RZ\Roadiz\CoreBundle\Api\TreeWalker\TreeWalkerGenerator service.
TreeWalkerGenerator will create a App\TreeWalker\MenuNodeSourceWalker instance for each node source of type Menu located
on your website root.

<?php

declare(strict_types=1);

namespace App\Controller;

use App\Api\Model\CommonContent;
use App\TreeWalker\MenuNodeSourceWalker;
use Doctrine\Persistence\ManagerRegistry;
use RZ\Roadiz\Core\AbstractEntities\TranslationInterface;
use RZ\Roadiz\CoreBundle\Api\Model\NodesSourcesHeadFactoryInterface;
use RZ\Roadiz\CoreBundle\Api\TreeWalker\TreeWalkerGenerator;
use RZ\Roadiz\CoreBundle\Preview\PreviewResolverInterface;
use RZ\Roadiz\CoreBundle\Repository\TranslationRepository;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\RequestStack;
use Symfony\Component\HttpKernel\Exception\NotFoundHttpException;
use Symfony\Component\Routing\Exception\ResourceNotFoundException;

final class GetCommonContentController extends AbstractController
{
 private RequestStack $requestStack;
 private ManagerRegistry $managerRegistry;
 private NodesSourcesHeadFactoryInterface $nodesSourcesHeadFactory;
 private PreviewResolverInterface $previewResolver;
 private TreeWalkerGenerator $treeWalkerGenerator;

 public function __construct(
 RequestStack $requestStack,
 ManagerRegistry $managerRegistry,
 NodesSourcesHeadFactoryInterface $nodesSourcesHeadFactory,
 PreviewResolverInterface $previewResolver,
 TreeWalkerGenerator $treeWalkerGenerator
) {
 $this->requestStack = $requestStack;
 $this->managerRegistry = $managerRegistry;
 $this->nodesSourcesHeadFactory = $nodesSourcesHeadFactory;
 $this->previewResolver = $previewResolver;
 $this->treeWalkerGenerator = $treeWalkerGenerator;
 }

 public function __invoke(): ?CommonContent
 {
 try {
 $request = $this->requestStack->getMainRequest();
 $translation = $this->getTranslationFromRequest($request);

 $resource = new CommonContent();

 $request?->attributes->set('data', $resource);
 $resource->head = $this->nodesSourcesHeadFactory->createForTranslation($translation);
 $resource->home = $resource->head->getHomePage();
 $resource->menus = $this->treeWalkerGenerator->getTreeWalkersForTypeAtRoot(
 'Menu',
 MenuNodeSourceWalker::class,
 $translation,
 3
);
 return $resource;
 } catch (ResourceNotFoundException $exception) {
 throw new NotFoundHttpException($exception->getMessage(), $exception);
 }
 }

 protected function getTranslationFromRequest(?Request $request): TranslationInterface
 {
 $locale = null;

 if (null !== $request) {
 $locale = $request->query->get('_locale');

 /*
 * If no _locale query param is defined check Accept-Language header
 */
 if (null === $locale) {
 $locale = $request->getPreferredLanguage($this->getTranslationRepository()->getAllLocales());
 }
 }
 /*
 * Then fallback to default CMS locale
 */
 if (null === $locale) {
 $translation = $this->getTranslationRepository()->findDefault();
 } elseif ($this->previewResolver->isPreview()) {
 $translation = $this->getTranslationRepository()
 ->findOneByLocaleOrOverrideLocale((string) $locale);
 } else {
 $translation = $this->getTranslationRepository()
 ->findOneAvailableByLocaleOrOverrideLocale((string) $locale);
 }
 if (null === $translation) {
 throw new NotFoundHttpException('No translation for locale ' . $locale);
 }
 return $translation;
 }

 protected function getTranslationRepository(): TranslationRepository
 {
 $repository = $this->managerRegistry->getRepository(TranslationInterface::class);
 if (!$repository instanceof TranslationRepository) {
 throw new \RuntimeException(
 'Translation repository must be instance of ' .
 TranslationRepository::class
);
 }
 return $repository;
 }
}

Then, the following resource will be exposed:

{
 "@context": "/api/contexts/CommonContent",
 "@id": "/api/common_content",
 "@type": "CommonContent",
 "home": {
 "@id": "/api/pages/11",
 "@type": "Page",
 "content": null,
 "image": [],
 "title": "Accueil",
 "publishedAt": "2022-04-12T16:24:00+02:00",
 "node": {
 "@type": "Node",
 "@id": "/api/nodes/10",
 "visible": true,
 "tags": []
 },
 "slug": "accueil",
 "url": "/fr"
 },
 "menus": {
 "mainMenuWalker": {
 "@type": "MenuNodeSourceWalker",
 "@id": "_:3341",
 "children": [],
 "childrenCount": 0,
 "item": {
 "@id": "/api/menus/2",
 "@type": "Menu",
 "title": "Menu principal",
 "publishedAt": "2022-04-12T00:39:00+02:00",
 "node": {
 "@type": "Node",
 "@id": "/api/nodes/1",
 "visible": false,
 "tags": []
 },
 "slug": "main-menu"
 },
 "level": 0,
 "maxLevel": 3
 },
 "footerMenuWalker": {
 "@type": "MenuNodeSourceWalker",
 "@id": "_:2381",
 "children": [],
 "childrenCount": 0,
 "item": {
 "@id": "/api/menus/3",
 "@type": "Menu",
 "linkInternalReference": [],
 "title": "Menu du pied de page",
 "publishedAt": "2022-04-12T11:18:12+02:00",
 "node": {
 "@type": "Node",
 "@id": "/api/nodes/2",
 "visible": false,
 "tags": []
 },
 "slug": "footer-menu"
 },
 "level": 0,
 "maxLevel": 3
 },
 "footerWalker": {
 "@type": "AutoChildrenNodeSourceWalker",
 "@id": "_:2377",
 "children": [],
 "childrenCount": 0,
 "item": {
 "@id": "/api/footers/16",
 "@type": "Footer",
 "content": "",
 "title": "Pied de page",
 "publishedAt": "2022-04-12T19:02:47+02:00",
 "node": {
 "@type": "Node",
 "@id": "/api/nodes/15",
 "visible": false,
 "tags": []
 },
 "slug": "footer"
 },
 "level": 0,
 "maxLevel": 3
 }
 },
 "head": {
 "@type": "NodesSourcesHead",
 "@id": "_:14679",
 "googleAnalytics": null,
 "googleTagManager": null,
 "matomoUrl": null,
 "matomoSiteId": null,
 "siteName": "Roadiz dev website",
 "metaTitle": "Contact – Roadiz dev website",
 "metaDescription": "Contact, Roadiz dev website",
 "policyUrl": null,
 "mainColor": null,
 "facebookUrl": null,
 "instagramUrl": null,
 "twitterUrl": null,
 "youtubeUrl": null,
 "linkedinUrl": null,
 "homePageUrl": "/",
 "shareImage": null
 }
}

Exposing node-types

All resources configuration files are located in ./config/api_resources folder.

Here is an example of API resource for a Page node-type, you’ll find default operations``plus a special ``getByPath operation which allow overriding WebResponse serialization groups.

App\GeneratedEntity\NSPage:
 types:
 - Page
 operations:
 ApiPlatform\Metadata\GetCollection:
 method: GET
 shortName: Page
 normalizationContext:
 enable_max_depth: true
 groups:
 - nodes_sources_base
 - nodes_sources_default
 - urls
 - tag_base
 - translation_base
 - document_display
 - document_thumbnails
 - document_display_sources
 - nodes_sources_images
 - nodes_sources_boolean
 _api_page_archives:
 method: GET
 class: ApiPlatform\Metadata\GetCollection
 shortName: Page
 uriTemplate: /pages/archives
 extraProperties:
 archive_enabled: true
 openapiContext:
 summary: 'Retrieve all Page ressources archives months and years'
 ApiPlatform\Metadata\Get:
 method: GET
 shortName: Page
 normalizationContext:
 groups:
 - nodes_sources
 - urls
 - tag_base
 - translation_base
 - document_display
 - document_thumbnails
 - document_display_sources
 - nodes_sources_images
 - nodes_sources_boolean
 getByPath:
 method: GET
 class: ApiPlatform\Metadata\Get
 uriTemplate: /web_response_by_path
 read: false
 controller: RZ\Roadiz\CoreBundle\Api\Controller\GetWebResponseByPathController
 normalizationContext:
 pagination_enabled: false
 enable_max_depth: true
 groups:
 - nodes_sources
 - node_listing
 - urls
 - tag_base
 - translation_base
 - document_display
 - document_thumbnails
 - document_display_sources
 - nodes_sources_images
 - nodes_sources_boolean
 - web_response
 - walker
 - walker_level
 - walker_metadata
 - meta
 - children
 openapiContext:
 tags:
 - WebResponse
 summary: 'Get a resource by its path wrapped in a WebResponse object'
 description: 'Get a resource by its path wrapped in a WebResponse'
 parameters:
 - { type: string, name: path, in: query, required: true, description: 'Resource path, or `/` for home page', schema: { type: string } }

To automatically generate your resources YAML configuration files, execute the following CLI command:

bin/console generate:api-resources

Serialization groups

Roadiz CMS uses symfony/serializer to perform JSON serialization over any objects, especially Doctrine entities.

	id

	Serialize every entity id.

	timestamps

	Serialize every date-timed entity createdAt and updatedAt fields.

	position

	Serialize every entity position fields.

	color

	Serialize every entity color fields.

	nodes_sources

	Serialize entities in a NodesSources context (all fields).

	nodes_sources_base

	Serialize entities in a NodesSources context, but with essential information.

	nodes_sources_documents

	Serialize documents linked to a NodesSources for each virtual field.

	nodes_sources_default

	Serialize NodesSources fields not contained in any group.

	nodes_sources_``group``

	Custom serialization groups are created according to your node-typ fields groups.
For example, if you set a field to a link group, nodes_sources_link serialization
group will be automatically generated for this field. Be careful, Roadiz will use groups
canonical names to generate serialization groups, it can mix _ and -.

	node

	Serialize entities in a Node context.

	node_children

	Serialize Nodes with their children.

	node_attributes

	Serialize Nodes with their attribute values.

	node_listing

	Serialize Nodes and NodesSources with their listing children options.
Adds listingSortOptions field to node-sources, with for example { "node.position": "ASC" } to be able to fetch
children nodes in a the same order as in the back-office. If the current serialized node-source’ parent is hiding its children,
listingSortOptions will be contain parent’s listingSortOptions instead.

	tag

	Serialize Tag.

	tag_base

	Serialize Tags with minimum information.

	tag_parent

	Serialize Tags with their parent.

	tag_children

	Serialize Tags with their children, do not use with tag_parent group.

	tag_documents

	Serialize Tags with their documents.

	tag_color

	Serialize Tags with their color field.

	tag_children_order

	Serialize Tags with their children_order fields.

	node_type

	Serialize entities in a NodeType context.

	attribute

	Serialize entities in a Attribute context.

	attribute_documents

	Serialize documents linked to a Attribute for each virtual field.

	custom_form

	Serialize entities in a CustomForm context.

	document

	Serialize entities in a Document context.

	document_display

	Serialize Document information required for displaying them.

	document_private

	Serialize Document privacy information

	document_display_sources

	Serialize Document information required for displaying alternative sources (audio, video).

	document_thumbnails

	Serialize Document first available thumbnail.

	document_folders

	Serialize Document information required for displaying attached visible folders.

	document_folders_all

	Serialize all Document attached folders, even not visible ones.

	folder

	Serialize entities in a Folder context.

	translation

	Serialize entities in a Translation context.

	translation_base

	Serialize Translation information required for displaying them.

	setting

	Serialize entities in a Setting context.

	setting_group

	Serialize entities in a SettingGroup context.

	user

	Serialize entities in a User context.

	user_group

	Serialize User entity with its groups.

	user_role

	Serialize User entity with its roles.

	user_personal

	Serialize User entity with its personal information.

	user_identifier

	Serialize User entity with its identifier (may be a personal information).

Tag system

Nodes are essentially hierarchical entities. So we created an entity to link nodes between them no matter where/what
they are. Tags are meant as tag nodes, we couldn’t be more explicit. But if you didn’t understand here is a schema:

[image: ../../_images/tags.svg]

You can see that tags can gather heterogeneous nodes coming from different types (pages and projects).
Tags can be used to display a category-navigation on your theme or to simply tidy your backoffice node database.

Did you notice that Tags are related to Nodes entities, not NodesSources? We thought that it would be
easier to manage that way not to forget to tag a specific node translation.
It means that you won’t be able to differentiate tag two NodesSources, if you absolutely need to, we encourage you to create two different nodes.

Translate tags

You will notice that tags work the same way as nodes do. By default, tags names can’t contain special characters in order to be used in URLs.
So we created TagTranslation entities which stand for Tag’s sources:

[image: ../../_images/tag-translations.svg]

In that way you will be able to translate your tags for each available languages and link documents to them.

Tag hierarchy

In the same way as Nodes work, tags can be nested to create tag groups.

Exposing tags in API

When using API Platform data transfer objects, Tags are ready-to-use with translations set-up on
name and description fields:

{
 "@type": "Tag",
 "@id": "/api/tags/6",
 "slug": "event",
 "name": "Event",
 "description": null,
 "color": "#000000",
 "visible": true,
 "documents": [],
 "parent": {
 "@type": "Tag",
 "@id": "/api/tags/3",
 "slug": "type",
 "name": "Type",
 "description": null,
 "color": "#000000",
 "visible": true,
 "documents": [],
 "parent": null
 }
}

Displaying node-source tags with Twig

Tag translations are already set up to track your current locale if you fetched them
using |tags Twig filter. Simply use getTranslatedTags()->first() Tag method
to use them in your templates.

{% set tags = nodeSource|tags %}

{% for tag in tags %}
 {% set tagTranslation = tag.translatedTags.first %}
 <li id="{{ tag.tagName }}">{{ tagTranslation.name }}
{% endfor %}

Tags translations documents

Documents can be linked to your tag translations. They will be different for
each translation, so make sure to synchronize them manually if you want to use the
same document for all translations.

They are available with getDocuments() method and will be ordered by position only.

Imagine, you want to link a PDF document for each of your tags, you can create a download
link as described below:

{% set tags = nodeSource|tags %}

{% for tag in tags %}
 {% set tagTranslation = tag.translatedTags.first %}
 <li id="{{ tag.tagName }}">
 <p>{{ tagTranslation.name }}</p>
 {% if tagTranslation.documents[0] %}
 {% trans %}download_tag_pdf{% endtrans %}
 {% endif %}

{% endfor %}

Documents system

Storing documents elsewhere…

Storing documents outside of your web-server is a good practice for many reasons:

	it allows to scale your application easily

	it allows to use a CDN to deliver your documents

	it allows to use a dedicated storage service (like Amazon S3) to store your documents

Documents system is based on Flysystem, a filesystem abstraction layer. It allows to store documents on local filesystem,
Amazon S3, Google Cloud Storage, Rackspace Cloud Storage, Dropbox, FTP server, etc.

If you want to override default configuration, you can create a config/packages/flysystem.yaml file in your project and
you must declare 3 storages:

	documents_public.storage: used to store public documents (accessible by anyone)

	documents_private.storage: used to store private documents (accessible only by authenticated users, or custom access control)

	intervention_request.storage: only used by Image processing system to store assets files

Following example shows how to configure Flysystem to use Scaleway Object Storage (S3 compatible) service:

config/packages/flysystem.yaml
Read the documentation at https://github.com/thephpleague/flysystem-bundle/blob/master/docs/1-getting-started.md
services:
 scaleway_public_client:
 class: 'AsyncAws\SimpleS3\SimpleS3Client'
 arguments:
 - endpoint: '%env(SCALEWAY_STORAGE_ENDPOINT)%'
 accessKeyId: '%env(SCALEWAY_STORAGE_ID)%'
 accessKeySecret: '%env(SCALEWAY_STORAGE_SECRET)%'
 region: '%env(SCALEWAY_STORAGE_REGION)%'
 # Private client must be different for allowing copy across file systems.
 scaleway_private_client:
 class: 'AsyncAws\SimpleS3\SimpleS3Client'
 arguments:
 - endpoint: '%env(SCALEWAY_STORAGE_ENDPOINT)%'
 accessKeyId: '%env(SCALEWAY_STORAGE_ID)%'
 accessKeySecret: '%env(SCALEWAY_STORAGE_SECRET)%'
 region: '%env(SCALEWAY_STORAGE_REGION)%'

flysystem:
 storages:
 documents_public.storage:
 adapter: 'asyncaws'
 visibility: 'public'
 options:
 client: 'scaleway_public_client'
 bucket: '%env(SCALEWAY_STORAGE_BUCKET)%'
 prefix: 'testing-public-files'
 documents_private.storage:
 adapter: 'asyncaws'
 visibility: 'private'
 options:
 client: 'scaleway_private_client'
 bucket: '%env(SCALEWAY_STORAGE_BUCKET)%'
 prefix: 'testing-private-files'
 intervention_request.storage:
 adapter: 'asyncaws'
 visibility: 'public'
 options:
 client: 'scaleway_public_client'
 bucket: '%env(SCALEWAY_STORAGE_BUCKET)%'
 prefix: 'testing-public-files'

Exposing documents in API

When using API Platform data transfer objects, Documents are ready-to-use with translations set-up on
name and description fields. Made sure to configure your API operations with at least document_display
serialization group:

{
 "@type": "Document",
 "@id": "/api/documents/xxxxx",
 "relativePath": "xxxxxxx/my_image.jpg",
 "type": "image",
 "mimeType": "image/jpeg",
 "name": null,
 "description": null,
 "embedId": null,
 "embedPlatform": null,
 "imageAverageColor": "#141414",
 "imageWidth": 1000,
 "imageHeight": 750,
 "mediaDuration": 0,
 "copyright": "© John Doe",
 "externalUrl": null,
 "processable": true,
 "thumbnail": null,
 "alt": "This is an image"
}

Expose document thumbnails

Thumbnails are exposed by default for each document, it is useful when documents are not displayable: PDF, native video, ZIP, etc:

{
 "@type": "Document",
 "@id": "/api/documents/xxxxx",
 "relativePath": "xxxxxxx/img_2004_framed_1080p_2000.webm",
 "type": "video",
 "mimeType": "video/webm",
 "name": null,
 "description": null,
 "embedId": null,
 "embedPlatform": null,
 "imageAverageColor": null,
 "imageWidth": 1920,
 "imageHeight": 1080,
 "mediaDuration": 14,
 "copyright": null,
 "externalUrl": null,
 "processable": false,
 "thumbnail": {
 "@type": "Document",
 "@id": "/api/documents/xxxxx",
 "relativePath": "xxxxxxx/img_2004_framed_1080p_2000.png",
 "type": "image",
 "mimeType": "image/png",
 "name": null,
 "description": null,
 "embedId": null,
 "embedPlatform": null,
 "imageAverageColor": "#917357",
 "imageWidth": 2662,
 "imageHeight": 1504,
 "mediaDuration": 0,
 "copyright": null,
 "externalUrl": null,
 "processable": true,
 "thumbnail": null,
 "alt": "img_2004_framed_1080p_2000.png"
 },
 "alt": "img_2004_framed_1080p_2000.webm"
}

Expose document alternative sources

Alternative sources are not serialized by default for performance matters, but you can enable them in your project.
Add document_display_sources serialization group to your resource configuration.

{
 "@type": "Document",
 "@id": "/api/documents/xxxxx",
 "relativePath": "xxxxxxxx/img_2004_framed_1080p_2000.webm",
 "type": "video",
 "mimeType": "video/webm",
 "name": null,
 "description": null,
 "embedId": null,
 "embedPlatform": null,
 "imageAverageColor": null,
 "imageWidth": 1920,
 "imageHeight": 1080,
 "mediaDuration": 14,
 "copyright": null,
 "externalUrl": null,
 "processable": false,
 "thumbnail": {
 "@type": "Document",
 "@id": "/api/documents/xxxxx",
 "relativePath": "xxxxxxxx/img_2004_framed_1080p_2000.png",
 "type": "image",
 "mimeType": "image/png",
 "name": null,
 "description": null,
 "embedId": null,
 "embedPlatform": null,
 "imageAverageColor": "#917357",
 "imageWidth": 2662,
 "imageHeight": 1504,
 "mediaDuration": 0,
 "copyright": null,
 "externalUrl": null,
 "processable": true,
 "thumbnail": null,
 "alt": "img_2004_framed_1080p_2000.png"
 },
 "altSources": [
 {
 "@type": "Document",
 "@id": "/api/documents/xxxxx",
 "relativePath": "xxxxxxxx/img_2004_framed_1080p_2000.mp4",
 "type": "video",
 "mimeType": "video/mp4",
 "name": null,
 "description": null,
 "embedId": null,
 "embedPlatform": null,
 "imageAverageColor": null,
 "imageWidth": 0,
 "imageHeight": 0,
 "mediaDuration": 0,
 "copyright": null,
 "externalUrl": null,
 "processable": false,
 "thumbnail": null,
 "alt": "img_2004_framed_1080p_2000.mp4"
 }
],
 "alt": "img_2004_framed_1080p_2000.webm"
}

Expose document folders

Document folders are not serialized by default for performance matters, but you can enable them in your project.
Add document_folders serialization group to your resource configuration.

{
 "@type": "Document",
 "@id": "/api/documents/3436",
 "relativePath": "xxxxxxxx/youtube_wplj0yxcnwk.jpg",
 "type": "image",
 "mimeType": "image/jpeg",
 "name": "Shirine - Bande annonce",
 "description": "",
 "embedId": "wPlj0YxCNwk",
 "embedPlatform": "youtube",
 "imageAverageColor": "#2d2426",
 "imageWidth": 200,
 "imageHeight": 113,
 "mediaDuration": 0,
 "copyright": "Opéra de Lyon (https://www.youtube.com/user/OperadeLyon)",
 "externalUrl": null,
 "processable": true,
 "thumbnail": null,
 "folders": [
 {
 "@type": "Folder",
 "@id": "/api/folders/20",
 "slug": "danse",
 "name": "Danse",
 "visible": true
 },
 {
 "@type": "Folder",
 "@id": "/api/folders/31",
 "slug": "opera-inside",
 "name": "Opera-inside",
 "visible": false
 }
],
 "alt": "Shirine - Bande annonce"
}

Attributes

Attributes are entities meant to qualify features on other entities, such as nodes.
The main difference between tags and attributes is that you can set a value for
each attributed node.

[image: ../../_images/manage_attributes.png]
The attribute “Color” can be set to “red” for one node and set to “green” for an other one.

Okay, but now what is the difference between attributes and node-type fields? Not so much
because node-type fields describe your node’ features too, but they are fixed and defined by
the developer. Once your node-type fields are created, you have to implement your feature in
your Twig templates, and translate it in your XLF files too.

Attributes are meant to be created and added by editors so they can use them in your website lifecycle
without needing any further development.

From the developer perspective, attributes are just a collection of entities to be displayed
in a loop. Then your editor can create new ones and be sure they will be displayed
without any additional development.

<ul class="block-attributes">
 {% for attributeValueTranslation in nodeSource|attributes %}

 {% if attributeValueTranslation.attribute.documents|length %}
 {% for document in attributeValueTranslation.attribute.documents %}
 <figure>{{ document|display }}</figure>
 {% endfor %}
 {% endif %}
 {{ attributeValueTranslation|attribute_label(translation) }}:
 {% if attributeValueTranslation is datetime %}
 {{ attributeValueTranslation.value|format_datetime('medium', 'short', locale=app.request.locale) }}
 {% elseif attributeValueTranslation is date %}
 {{ attributeValueTranslation.value|format_date('medium', locale=app.request.locale) }}
 {% elseif attributeValueTranslation is country %}
 {{ attributeValueTranslation.value|country_name(request.locale) }}
 {% else %}
 {{ attributeValueTranslation.value }}
 {% endif%}

 {% endfor %}

If you grouped your attributes, you can use grouped_attributes filter instead:

<ul class="block-attributes">
 {% for item in nodeSource|grouped_attributes %}

 {% if item.group %}
 {{ item.group|attribute_group_label(translation) }}
 {% endif %}

 {% for attributeValueTranslation in item.attributeValues %}

 {% if attributeValueTranslation.attribute.documents|length %}
 {% for document in attributeValueTranslation.attribute.documents %}
 <figure>{{ document|display }}</figure>
 {% endfor %}
 {% endif %}
 {{ attributeValueTranslation|attribute_label(translation) }}:
 {% if attributeValueTranslation is datetime %}
 {{ attributeValueTranslation.value|format_datetime('medium', 'short', locale=app.request.locale) }}
 {% elseif attributeValueTranslation is date %}
 {{ attributeValueTranslation.value|format_date('medium', locale=app.request.locale) }}
 {% elseif attributeValueTranslation is country %}
 {{ attributeValueTranslation.value|country_name(request.locale) }}
 {% else %}
 {{ attributeValueTranslation.value }}
 {% endif%}

 {% endfor %}

 {% endfor %}

Attributes types

[image: ../../_images/create_attribute.png]

	String

	Date

	Date and time

	Single choice: choice among defined options in your attribute

	Boolean

	Integer

	Decimal

	Email

	Color

	Country: ISO 2-letters country code

Add attributes to nodes

Attribute section is available for any node in any translations.

[image: ../../_images/add_attribute.png]

Twig extension

Several filters and tests are available to ease up templating with attributes:

Filters

	attributes: same as node_source_attributes() method, get all available attributes from a NodesSources.

	grouped_attributes: same as node_source_grouped_attributes() method, get all available attributes from a NodesSources and gather them into their group.

	attribute_label(translation): get attribute translated label or code if not translated.

	attribute_group_label(translation): get attribute group translated name or canonicalName if not translated.

Tests

	datetime

	date

	country

	boolean

	choice

	enum

Forms

Roadiz uses Symfony forms logic and API.
However, we made ready-made contact and custom forms builders to
ease up your development and even make form-building available for your website editors.

	Building contact forms
	One contact-form for one action

	Using contact-form in block controllers

	Alter email configuration after form submit

	Securing your form with Google reCAPTCHA

	Building custom forms
	Exposing a custom form in your API

	Adding custom form to your theme

Building contact forms

With Roadiz you can easily create simple contact forms with ContactFormManager class. Your controller has
a convenient shortcut to create this manager with $this->createContactFormManager() method.

If you want to add your own fields, you can use the manager’ form-builder with $contactFormManager->getFormBuilder();.
Then add your field using standard Symfony form syntax. Do not forget to use Constraints to handle errors.

One contact-form for one action

Here is an example to create your contact form in your controller action.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	 use Symfony\Component\Validator\Constraints\File;
 use Symfony\Component\Form\Extension\Core\Type\CheckboxType;
 use Symfony\Component\Form\Extension\Core\Type\FileType;
 use Symfony\Component\Form\Extension\Core\Type\SubmitType;

 // …
 // Create contact-form manager and add 3 default fields.
 $contactFormManager = $this->createContactFormManager()
 ->withDefaultFields();
 /*
 * (Optional) Add custom fields…
 */
 $formBuilder = $contactFormManager->getFormBuilder();
 $formBuilder->add('callMeBack', CheckboxType::class, [
 'label' => 'call.me.back',
 'required' => false,
])
 ->add('document', FileType::class, [
 'label' => 'document',
 'required' => false,
 'constraints' => [
 new File([
 'maxSize' => $contactFormManager->getMaxFileSize(),
 'mimeTypes' => $contactFormManager->getAllowedMimeTypes(),
]),
]
])
 ->add('send', SubmitType::class, [
 'label' => 'send.contact.form',
]);

 /*
 * This is the most important point. handle method will perform form
 * validation and send email.
 *
 * Handle method should return a Response object if everything is OK.
 */
 if (null !== $response = $contactFormManager->handle()) {
 return $response;
 }

 $form = $contactFormManager->getForm();

In this example, we used withDefaultFields method which add automatically email, name and message
fields with right validation constraints. This method is optional and you can add any field you want manually, just
keep in mind that you should always ask for an email.

Then in your contact page Twig template:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 {#
 # Display contact errors
 #}
 {% for label, messages in app.flashes(['warning', 'error']) %}
 {% for message in messages %}
 <p class="alert alert-{{ label }}">
 {{- message -}}
 </p>
 {% endfor %}
 {% endfor %}
 {#
 # Display contact form
 #}
 {% form_theme contactForm '@MyTheme/forms.html.twig' %}
 {{ form(contactForm) }}

Using contact-form in block controllers

If you want to use contact-forms in blocks instead of a full page, you will need
to make your redirection response bubble through Twig render. The only way to stop
Twig is to throw an exception and to pass your Redirect or Json response within your
Exception.

Roadiz makes this possible with RZ\Roadiz\CoreBundle\Exception\ForceResponseException.
For example, in a App/Controllers/ContactBlockController, instead of
returning the contactFormManager response, you will have to throw a ForceResponseException
with it as an argument.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 // ./src/Controllers/ContactBlockController.php

 use RZ\Roadiz\CoreBundle\Exception\ForceResponseException;

 …
 // Create contact-form manager and add 3 default fields.
 $contactFormManager = $this->createContactFormManager()
 ->withDefaultFields();

 if (null !== $response = $contactFormManager->handle()) {
 /*
 * Force response to bubble through Twig rendering process.
 */
 throw new ForceResponseException($response);
 }

 $form = $contactFormManager->getForm();

Then, in your master controller (i.e. PageController), render method will automatically
catch your ForceResponseException exception in order to extract the forced response object. Then
it will return your response instead of your page twig rendered output.

Alter email configuration after form submit

If you want to customize emails sent with form data, you can use Symfony form events to change the contact form manager
options:
The following example alters the email subject to add the user email and makes the subject unique for the receiver.

$formBuilder->addEventListener(FormEvents::SUBMIT, function (FormEvent $event) use ($contactFormManager) {
 $contactFormManager->setSubject($contactFormManager->getSubject() . ': ' . $event->getForm()->get('email')->getData());
});

You can also use this behaviour to change dynamically the contact form receiver after the user chose it in a select box input.

Note

You can read more about form events at https://symfony.com/doc/current/form/events.html

Securing your form with Google reCAPTCHA

Roadiz can seamlessly use Google reCAPTCHA to secure your contact form against robots.
All you need to do is to register on https://www.google.com/recaptcha/ to ask for a sitekey
and a secret. Once you’ve got these two keys, add them to your .env.local or Symfony secrets.

	APP_RECAPTCHA_PRIVATE_KEY

	APP_RECAPTCHA_PUBLIC_KEY

Then, just use withGoogleRecaptcha() method on your contact-form manager.

// Create contact-form manager, add 3 default fields and add a reCAPTCHA.
$contactFormManager = $this->createContactFormManager()
 ->withDefaultFields()
 ->withGoogleRecaptcha();

Do not forget to add recaptcha form-template and to embed google’s javascript.

 {# In your theme’ forms.html.twig file #}
 {% block recaptcha_widget -%}
 <input id="my-form-recaptcha" type="hidden" name="{{ form.vars.name }}" />
 <script src="https://www.google.com/recaptcha/api.js?render={{ configs.publicKey }}"></script>
 <script>
 /*
 * Google Recaptcha v3
 * @see https://developers.google.com/recaptcha/docs/v3
 */
 (function() {
 if (!window.grecaptcha) {
 console.warn('Recaptcha is not loaded');
 }
 var form = document.getElementById('my-form');
 form.addEventListener('submit', function (event) {
 event.preventDefault();
 window.grecaptcha.ready(function() {
 window.grecaptcha.execute('{{ configs.publicKey }}', {action: 'submit'}).then(function(token) {
 var input = document.getElementById('my-form-recaptcha');
 if (input) {
 input.value = token;
 }
 form.submit()
 });
 });
 });
 })();
 </script>
{%- endblock recaptcha_widget %}

Building custom forms

Building a custom form looks like building a node but it is a lot simpler!
Let’s have a look at structure image.

[image: ../../_images/custom-form.svg]

After creating a custom form, you add some question. The questions are the CustomFormField type.

	The answer is saved in two entities:

	
	in CustomFormAnswer

	in CustomFormFieldAttribute

The CustomFormAnswer will store the IP and the submitted time. While question answer will be in CustomFormFieldAttribute with the CustomFormAnswer id and the CustomFormField id.

Exposing a custom form in your API

Custom-form can be filled in a headless context, using _definition_ and _post_ endpoints:

GET {{baseUrl}}/api/custom_forms/:id/definition

Custom form definition is a JSON form schema meant to give your frontend application a recipe to build a HTML form:

{
 "title": "",
 "type": "object",
 "properties": {
 "subject": {
 "type": "string",
 "title": "Subject",
 "attr": {
 "data-group": null,
 "placeholder": null
 },
 "description": "Est aut quas eum error architecto.",
 "propertyOrder": 1
 },
 "email": {
 "type": "string",
 "title": "Email",
 "attr": {
 "data-group": null,
 "placeholder": null
 },
 "description": "Email address",
 "widget": "email",
 "propertyOrder": 2
 },
 "test": {
 "title": "TEST",
 "type": "object",
 "properties": {
 "message": {
 "type": "string",
 "title": "Message",
 "attr": {
 "data-group": "TEST",
 "placeholder": null
 },
 "widget": "textarea",
 "propertyOrder": 1
 },
 "fichier": {
 "type": "string",
 "title": "File",
 "attr": {
 "data-group": "TEST",
 "placeholder": null
 },
 "widget": "file",
 "propertyOrder": 2
 }
 },
 "required": [
 "fichier"
],
 "attr": {
 "data-group-wrapper": "test"
 },
 "propertyOrder": 3
 }
 },
 "required": [
 "subject",
 "email",
 "test"
]
}

Then you can send your data to the post endpoint using FormData and respecting field hierarchy:

[image: ../../_images/custom_form_post.png]

POST {{baseUrl}}/api/custom_forms/:id/post

If there are any error, a JSON response will give you details fields-by-fields.

If post is successful, APi will respond an empty 202 Accepted response

[image: ../../_images/custom_form_post_response.png]

Then you will be able to see all your form submits in Roadiz backoffice :

[image: ../../_images/custom_form_entry.png]
In Manage custom forms section / Answers

[image: ../../_images/custom_form_answers.png]

Note

Any file attached to your custom-form answers will be uploaded as private documents.

[image: ../../_images/custom_form_response.png]

Adding custom form to your theme

If you want to integrate your custom-forms into your theme, you can use Roadiz
CustomFormHelper class to generate a standard FormInterface and to
create a view into your theme templates.

First you must create a dedicated action for your node or your block
if you used {{ nodeSource|render(@AwesomeTheme) }} Twig filter.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	 use RZ\Roadiz\CoreBundle\Entity\CustomForm;
 use RZ\Roadiz\CoreBundle\Exception\EntityAlreadyExistsException;
 use RZ\Roadiz\CoreBundle\Exception\ForceResponseException;
 use Symfony\Cmf\Component\Routing\RouteObjectInterface;
 use RZ\Roadiz\CoreBundle\CustomForm\CustomFormHelper;
 use Symfony\Component\Form\FormError;
 use Symfony\Component\HttpFoundation\JsonResponse;

 // …

 /*
 * Get your custom form instance from your node-source
 * only if you added a *custom_form reference field*.
 */
 $customForms = $this->nodeSource->getCustomFormReference();
 if (isset($customForms[0]) && $customForms[0] instanceof CustomForm) {
 /** @var CustomForm $customForm */
 $customForm = $customForms[0];

 /*
 * Verify if custom form is still open
 * for answers
 */
 if ($customForm->isFormStillOpen()) {
 /*
 * CustomFormHelper will generate Symfony form against
 * Roadiz custom form entity.
 * You can add a Google Recaptcha passing following options.
 */
 $helper = $this->customFormHelperFactory->createHelper($customForm);
 $form = $helper->getForm($request, false, true);
 $form->handleRequest($request);

 if ($form->isSubmitted() && $form->isValid()) {
 try {
 $answer = $helper->parseAnswerFormData($form, null, $request->getClientIp());

 if ($request->isXmlHttpRequest()) {
 $response = new JsonResponse([
 'message' => $this->getTranslator()->trans('form_has_been_successfully_sent')
]);
 } else {
 $this->publishConfirmMessage(
 $request,
 $this->getTranslator()->trans('form_has_been_successfully_sent')
);
 $response = $this->redirect($this->generateUrl(
 RouteObjectInterface::OBJECT_BASED_ROUTE_NAME,
 [RouteObjectInterface::ROUTE_OBJECT => $this->nodeSource->getParent()]
));
 }
 /*
 * If you are in a BlockController use ForceResponseException
 */
 throw new ForceResponseException($response);
 /*
 * Or directly return redirect response.
 */
 //return $response;
 } catch (EntityAlreadyExistsException $e) {
 $form->addError(new FormError($e->getMessage()));
 }
 }

 $this->assignation['form'] = $form->createView();
 }
 }

If you didn’t do it yet, create a custom form theme in your views/ folder:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	 {#
 # AwesomeTheme/Resources/views/form.html.twig
 #}
 {% extends "bootstrap_3_layout.html.twig" %}

 {% block form_row -%}
 <div class="form-group form-group-{{ form.vars.block_prefixes[1] }} form-group-{{ form.vars.name }}">
 {% if form.vars.block_prefixes[1] != 'separator' %}
 {{- form_label(form) -}}
 {% endif %}
 {{- form_errors(form) -}}
 {#
 # Render field description inside your form
 #}
 {% if form.vars.attr['data-description'] %}
 <div class="form-description">
 {{ form.vars.attr['data-description']|markdown }}
 </div>
 {% endif %}
 {{- form_widget(form) -}}
 </div>
 {%- endblock form_row %}

 {% block recaptcha_widget -%}
 <input id="my-form-recaptcha" type="hidden" name="{{ form.vars.name }}" />
 <script src="https://www.google.com/recaptcha/api.js?render={{ configs.publicKey }}"></script>
 <script>
 /*
 * Google Recaptcha v3
 * @see https://developers.google.com/recaptcha/docs/v3
 */
 (function() {
 if (!window.grecaptcha) {
 console.warn('Recaptcha is not loaded');
 }
 var form = document.getElementById('my-form');
 form.addEventListener('submit', function (event) {
 event.preventDefault();
 window.grecaptcha.ready(function() {
 window.grecaptcha.execute('{{ configs.publicKey }}', {action: 'submit'}).then(function(token) {
 var input = document.getElementById('my-form-recaptcha');
 if (input) {
 input.value = token;
 }
 form.submit()
 });
 });
 });
 })();
 </script>
{%- endblock recaptcha_widget %}

In your main view, add your form and use your custom form theme:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 {#
 # AwesomeTheme/Resources/views/form-blocks/customformblock.html.twig
 #}
 {% if form %}
 {% form_theme form '@AwesomeTheme/form.html.twig' %}
 {{ form_start(form) }}
 {{ form_widget(form) }}
 <div class="form-group">
 <button class="btn btn-primary" type="submit">{% trans %}send_form{% endtrans %}</button>
 </div>
 {{ form_end(form) }}
 {% else %}
 <p class="alert alert-warning">{% trans %}form_is_not_available{% endtrans %}</p>
 {% endif %}

Contributing

If you want to contribute to Roadiz project by reporting issues or hacking code, let us thank you! You are awesome!

Reporting issues

When you encounter an issue with Roadiz we would love to hear about it.
Because thanks to you, we can make the most awesome and stable CMS!
If you submit a bug report please include all information available to you, here are some things you can do:

	Try to simplify the things you are doing until getting a minimal set of actions reproducing the problem.

	Do not forget to join a screenshot or a trace of your error.

Coding style

The code you contributed to the project should respect the guidelines defined in PHP PSR2 standard.
If you install the requirements for devs by the command composer update --dev, you can use phpcs to check your code.
You can copy and paste the following command-lines to check easily:

php bin/phpcs --report=full --report-file=./report.txt -p ./

Or you can use phpcbf to automatically fix code style issues.

php bin/phpcbf --report=full --report-file=./report.txt -p ./

Please take those rules into account, we aim to have a clean codebase. A coherent code-style will contribute to Roadiz stability.
Your code will be checked when we will be considering your pull requests.

Static analysis

Then we use phpstan as a static code analyzer to check bugs and misuses before they occur:

php bin/phpstan analyse -c phpstan.neon

Troubleshooting

Empty caches manually for an environment

If you experience errors only on a dedicated environment such as
prod``or ``dev, it means that cache is not fresh for
these environments. As a first try, you should always call
bin/console cache:clear; (replace prod by your environment)
in command line.

Problem with entities and Doctrine cache?

After each Roadiz upgrade you should always upgrade your
node-sources entity classes and upgrade database schema.

bin/console generate:nsentities;
bin/console doctrine:schema:update --dump-sql --force;
bin/console cache:clear;

Extension system

	Extending Roadiz
	Add back-office entry

	Linking things together

	Events
	Nodes events

	NodesSources events

	Tags events

	Folders events

	Translations events

	UrlAlias events

	User events

	Extending Solr indexation
	How to index page blocks contents

Extending Roadiz

Add back-office entry

At first, create a controller into your theme folder, for example src/Controller/Admin/AdminController.

Example:

namespace App\Controller\Admin;

use Themes\Rozier\RozierApp;
use Symfony\Component\HttpFoundation\Request;

class AdminController extends RozierApp
{
 public function listAction(
 Request $request
) {
 return $this->render(
 'admin/test.html.twig',
 $this->assignation
);
 }
}

If you look at this example you can see the class extends RozierApp class.
This will enable you to “inject” your code into Rozier Back-stage DOM and Style.

Now let’s have a look to your twig template file templates/admin/test.html.twig.

{% extends '@Rozier/layout.html.twig' %}

{% block customStyles %}
<style>
 /* Custom styles here */
</style>
{% endblock %}

{% block customScripts %}
<script>
 /* Custom Scripts here */
</script>
{% endblock %}

{% block content %}
<section class="content-global add-test">
 <header class="content-header header-test header-test-edit">
 <h1 class="content-title test-add-title">{% trans %}Test admin{% endtrans %}</h1>
 </header>

 <article class="content content-test">
 <p>This page is created from MyTheme to show you how to extend backoffice features.</p>
 </article>
</section>
{% endblock %}

The first line is for inheriting from Rozier base template, you can notice that we explicitly choose @Rozier namespace.

The two next blocks are made for you to add some CSS or Javascript.
For CSS, the block customStyle can be use to link an external file with a <link> tag,
the path must be something like that {{ asset('static/css/customstyle.css', 'MyTheme') }},
or add directly some CSS with “<style>” tag.
For JS, the block customScripts work as is, just link an external JS file or write your <script> tag.

Then create your own content, do not hesitate to give a look at Rozier back-stage theme Twig files to use the right DOM structure.
For simple features, you wouldn’t have to extend JS nor CSS if you follow the same HTML coding style.

Linking things together

Add the route in the theme config/routes.yaml file.

In this case the route will be:

adminTestPage:
 # Setting your path behind rz-admin will activate Firewall
 path: /rz-admin/test
 defaults:
 _controller: App\Controller\Admin\AdminController::listAction

Inject your own entries in back-stage

The last thing to do is to add your new admin entry in the back-office menu.

Go to your config/packages/roadiz_rozier.yaml and add your own entries:

roadiz_rozier:
 entries:
 # ...
 customAdmin:
 name: customAdmin
 route: adminTestPage
 icon: uk-icon-cube
 roles: ~

If you want to have a category and sub-entries, just change the path at null value and create your subentries array as described in the next example:

roadiz_rozier:
 entries:
 # ...
 customAdmin:
 name: customAdmin
 route: ~
 icon: uk-icon-cube
 roles: ~
 subentries:
 customAdminPage:
 name: 'customAdmin page'
 route: adminTestPage
 icon: uk-icon-cube
 roles: ~

You can restrict buttons to users with specific roles. Just replace roles: ~ with
roles: ['ROLE_ACCESS_NODES']. You can even create your own roles to take full power of
Roadiz extension system.

Warning

Adding roles in roadiz_rozier.entries service will only restrict buttons display in Rozier backstage interface.
To really protect your controllers from unwanted users add $this->validateAccessForRole('ROLE_ACCESS_MY_FEATURE'); at the first
line of your back-ofice controller‘s actions. This will kick non-granted users from your custom back-office parts. Give a look at Rozier theme controllers to see how we use it.

Events

Roadiz node system implements several events. So you will be able to create
and inject your own event subscribers inside Roadiz dispatcher.

To understand how the event dispatcher works, you should read the
Symfony documentation at [http://symfony.com/doc/current/components/event_dispatcher/introduction.html] before.

Nodes events

	RZ\Roadiz\CoreBundle\Event\Node\NodeCreatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Node\NodeUpdatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Node\NodeDeletedEvent::class

	RZ\Roadiz\CoreBundle\Event\Node\NodeUndeletedEvent::class

	RZ\Roadiz\CoreBundle\Event\Node\NodeDuplicatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Node\NodePathChangedEvent::class

	RZ\Roadiz\CoreBundle\Event\Node\NodeTaggedEvent::class: This event is triggered for tag and un-tag action.

	RZ\Roadiz\CoreBundle\Event\Node\NodeVisibilityChangedEvent::class: This event is triggered each time a node becomes visible or unvisible.

	RZ\Roadiz\CoreBundle\Event\Node\NodeStatusChangedEvent::class: This event is triggered each time a node status changes.

Each node event object contains the current Node entity. You will get it using $event->getNode().

NodesSources events

RZ\Roadiz\CoreBundle\Event\NodesSourcesEvents

	RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesCreatedEvent::class

	RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesPreUpdatedEvent::class: This event is dispatched BEFORE entity manager FLUSHED.

	RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesUpdatedEvent::class: This event is dispatched AFTER entity manager FLUSHED.

	RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesDeletedEvent::class

Each node-source event object contains the current NodesSources entity. You will get it using $event->getNodeSource().

	RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesIndexingEvent::class: This event type is dispatched during Solr indexation. Your event will be \RZ\Roadiz\CoreBundle\Event\FilterSolariumNodeSourceEvent and it will allow you to alter or improve your Solr index according to your node-source type.

Note

You will find a simple subscriber example in Roadiz back-office theme which is called Themes\Rozier\Events\SolariumSubscriber.
This subscriber is useful to update or delete your Solr index documents against your node-source database.

	RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesPathGeneratingEvent::class: This event type is dispatched when the node-router generate a path for your node-source using {{ path() }} Twig method or $this->urlGenerator->generate() controller method. The default subscriber will generate the complete hierarchical path for any node-source using their identifier (available url-alias or node’ name).

Tags events

	RZ\Roadiz\CoreBundle\Event\Tag\TagCreatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Tag\TagUpdatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Tag\TagDeletedEvent::class

Each tag event object contains the current Tag entity. You will get it using $event->getTag().

Folders events

	RZ\Roadiz\CoreBundle\Event\Folder\FolderCreatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Folder\FolderUpdatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Folder\FolderDeletedEvent::class

Each folder event object contains the current Folder entity. You will get it using $event->getFolder().

Translations events

	RZ\Roadiz\CoreBundle\Event\Translation\TranslationCreatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Translation\TranslationUpdatedEvent::class

	RZ\Roadiz\CoreBundle\Event\Translation\TranslationDeletedEvent::class

Each folder event object contains the current Translation entity. You will get it using $event->getTranslation().

UrlAlias events

	RZ\Roadiz\CoreBundle\Event\UrlAlias\UrlAliasCreatedEvent::class

	RZ\Roadiz\CoreBundle\Event\UrlAlias\UrlAliasUpdatedEvent::class

	RZ\Roadiz\CoreBundle\Event\UrlAlias\UrlAliasDeletedEvent::class

Each folder event object contains the current UrlAlias entity. You will get it using $event->getUrlAlias().

User events

	RZ\Roadiz\CoreBundle\Event\User\UserCreatedEvent::class

	RZ\Roadiz\CoreBundle\Event\User\UserUpdatedEvent::class

	RZ\Roadiz\CoreBundle\Event\User\UserDeletedEvent::class

	RZ\Roadiz\CoreBundle\Event\User\UserDisabledEvent::class

	RZ\Roadiz\CoreBundle\Event\User\UserEnabledEvent::class

	RZ\Roadiz\CoreBundle\Event\User\UserPasswordChangedEvent::class

Each folder event object contains the current User entity. You will get it using $event->getUser().

Extending Solr indexation

How to index page blocks contents

If all your text content is written in block nodes instead of reachable pages, you should index them
into your page Solr documents to improve your search engine relevancy.

You can use the NodesSourcesIndexingEvent::class event to enhance your node indexing data before
it’s persisted into Solr engine (especially collection_txt field):

<?php

declare(strict_types=1);

namespace App\EventSubscriber;

use RZ\Roadiz\CoreBundle\Api\TreeWalker\AutoChildrenNodeSourceWalker;
use RZ\Roadiz\CoreBundle\Entity\NodesSources;
use RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesIndexingEvent;
use RZ\Roadiz\CoreBundle\SearchEngine\SolariumFactoryInterface;
use RZ\TreeWalker\WalkerContextInterface;
use RZ\TreeWalker\WalkerInterface;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

/**
 * Index sub nodes content into any reachable node-source.
 */
final class NodeSourceIndexingEventSubscriber implements EventSubscriberInterface
{
 private WalkerContextInterface $walkerContext;
 private SolariumFactoryInterface $solariumFactory;
 private int $maxLevel;

 /**
 * @param WalkerContextInterface $walkerContext
 * @param SolariumFactoryInterface $solariumFactory
 * @param int $maxLevel
 */
 public function __construct(
 WalkerContextInterface $walkerContext,
 SolariumFactoryInterface $solariumFactory,
 int $maxLevel = 5
) {
 $this->walkerContext = $walkerContext;
 $this->solariumFactory = $solariumFactory;
 $this->maxLevel = $maxLevel;
 }

 /**
 * @inheritDoc
 */
 public static function getSubscribedEvents(): array
 {
 return [
 NodesSourcesIndexingEvent::class => ['onIndexing'],
];
 }

 public function onIndexing(NodesSourcesIndexingEvent $event): void
 {
 $nodeSource = $event->getNodeSource();

 if (null !== $nodeSource->getNode() && $nodeSource->isReachable() && !$event->isSubResource()) {
 $assoc = $event->getAssociations();

 $blockWalker = AutoChildrenNodeSourceWalker::build(
 $nodeSource,
 $this->walkerContext,
 $this->maxLevel
);

 // Need a locale field
 $locale = $nodeSource->getTranslation()->getLocale();
 $lang = \Locale::getPrimaryLanguage($locale) ?? 'fr';

 foreach ($blockWalker->getChildren() as $subWalker) {
 $this->walkAndIndex($subWalker, $assoc, $lang);
 }

 $event->setAssociations($assoc);
 }
 }

 /**
 * @param WalkerInterface $walker
 * @param array $assoc
 * @param string $locale
 * @throws \Exception
 */
 protected function walkAndIndex(WalkerInterface $walker, array &$assoc, string $locale): void
 {
 $item = $walker->getItem();
 if ($item instanceof NodesSources) {
 $solarium = $this->solariumFactory->createWithNodesSources($walker->getItem());
 // Fetch all fields array association AS sub-resources (i.e. do not index their title)
 $childAssoc = $solarium->getFieldsAssoc(true);
 $assoc['collection_txt'] = array_filter(array_merge(
 $assoc['collection_txt'],
 $childAssoc['collection_txt']
));
 if (!empty($childAssoc['collection_txt_' . $locale])) {
 $assoc['collection_txt_' . $locale] .= PHP_EOL . $childAssoc['collection_txt_' . $locale];
 }
 }
 if ($walker->count() > 0) {
 foreach ($walker->getChildren() as $subWalker) {
 $this->walkAndIndex($subWalker, $assoc, $locale);
 }
 }
 }
}

Index

 A
 | C
 | D
 | F
 | I
 | N
 | P
 | S
 | T
 | U

A

 	
 	attribute

 	
 	attribute_documents

C

 	
 	color

 	
 	custom_form

D

 	
 	document

 	document_display

 	document_display_sources

 	
 	document_folders

 	document_folders_all

 	document_private

 	document_thumbnails

F

 	
 	folder

I

 	
 	id

N

 	
 	node

 	node_attributes

 	node_children

 	node_listing

 	node_type

 	
 	nodes_sources

 	nodes_sources_``group``

 	nodes_sources_base

 	nodes_sources_default

 	nodes_sources_documents

P

 	
 	position

S

 	
 	setting

 	
 	setting_group

T

 	
 	tag

 	tag_base

 	tag_children

 	tag_children_order

 	tag_color

 	
 	tag_documents

 	tag_parent

 	timestamps

 	translation

 	translation_base

U

 	
 	user

 	user_group

 	
 	user_identifier

 	user_personal

 	user_role

Managing Translation

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/upload_document.png
@ Upload

< Embed

Random

@ Unused documents

Documents

10 items

nav.xhtml

 Table of Contents

 		
 Welcome to Roadiz v2 documentation

 		
 User documentation

 		
 Write in Markdown

 		
 Titles

 		
 Bold

 		
 Italic

 		
 Strike-through

 		
 Ordered and unordered lists

 		
 New paragraph and line-break

 		
 Hypertext links

 		
 Block quotes

 		
 Images

 		
 Footnotes

 		
 Managing nodes

 		
 Node-tree navigation

 		
 Creating a node

 		
 Edit an existing node

 		
 Nodes publication system

 		
 Managing node-types

 		
 Add node-type

 		
 Delete node-type

 		
 Adding node-type field

 		
 Other actions

 		
 Managing documents

 		
 Upload document

 		
 Embed document

 		
 Random document

 		
 Unused document

 		
 Managing users

 		
 Create a new user

 		
 Delete user

 		
 Adding role

 		
 Other action

 		
 Enable SSO for back-office users

 		
 Developer documentation

 		
 First steps

 		
 Requirements

 		
 Create a new Roadiz project

 		
 Manual configuration

 		
 Upgrading

 		
 Node system

 		
 Node-types, nodes-sources and nodes

 		
 Node-type fields

 		
 Handling nodes and their hierarchy

 		
 Building headless websites using API

 		
 WebResponse concept

 		
 Exposing node-types

 		
 Serialization groups

 		
 Tag system

 		
 Translate tags

 		
 Tag hierarchy

 		
 Exposing tags in API

 		
 Displaying node-source tags with Twig

 		
 Documents system

 		
 Storing documents elsewhere…

 		
 Exposing documents in API

 		
 Expose document thumbnails

 		
 Expose document alternative sources

 		
 Expose document folders

 		
 Attributes

 		
 Attributes types

 		
 Add attributes to nodes

 		
 Twig extension

 		
 Forms

 		
 Building contact forms

 		
 Building custom forms

 		
 Contributing

 		
 Reporting issues

 		
 Coding style

 		
 Static analysis

 		
 Troubleshooting

 		
 Empty caches manually for an environment

 		
 Problem with entities and Doctrine cache?

 		
 Extension system

 		
 Extending Roadiz

 		
 Add back-office entry

 		
 Linking things together

 		
 Events

 		
 Nodes events

 		
 NodesSources events

 		
 Tags events

 		
 Folders events

 		
 Translations events

 		
 UrlAlias events

 		
 User events

 		
 Extending Solr indexation

 		
 How to index page blocks contents

_images/add-child-node-btn.png
Bl o crianoce

_images/add-node-btn.png
+ Addanode

_images/add_nodetype.png
Add a node type

Name

TestNodeType

Display name

Test Node Type

Description

Visible Newsletter node-type Node-type hides its nodes Color

a B B I oo

_images/add_nodetype_field.png
Add a node-type field

Name

Label

Type

Single-line text .

Description

Group name

Visible Indexed

Default values

Enter each values separated with commas.

Min length Max length

_images/add-stack-type.png
Add a stack type

— Node-type *

Page -

Stack types

Node-type

Actions

_images/add_attribute.png
About

Content Parameters Tags Attributes SEO % O

Code Value

Tshirt size S v

Add a new attribute* Weight - =4 Add attribute to current node

=+ Create an attribute

En De Fr

Pt Ru Th Tr

Actions

Zh +

=]]

Lx) | (4

_images/add_user_button.png
Users

Sitems

+ Addan user

_images/add_nodetype_field_menu.png
+ Addanode-type field

Test Node Type fields

Name Label Type Actions.

_images/add_role_user.png
test roles

Informations Details Security Roles Groups History

Inherited roles
ROLE_USER
Specific roles Actions

Add a specific role

Role

ROLE_ACCESS_COMMENTS -

+ Addrole

_images/create_nodetype_button.png
Node;types

13 items

+ Addanode type

4, import nodetype

_images/created_nodetype.png
TestNodeType

Test Node Type

NSTestNodeType.

_images/add_user_toolbar.png
7o)

User system

(@ Manage users
|8, vanageroies

S8 Manage groups.

_images/create_attribute.png
Code *

t_shirt_size

Attribute type *

Basic text string v

Translations

T-Shirt size

English +

Available options (for choice type)

Taille du t-shirt

French +

Available options (for choice type)

Create an_attribute

000

000

_images/custom_form_entry.png
xix Interactions

Manage custom forms

_images/custom_form_post.png
POST v

Params ® Authorization Headers (9)

Body @

{{baseUrl}}/api/custom_forms/:id/post

Pre-request Script Tests Settings

@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

KEY

email

subject

VALUE
ambroise@roadiz.io

Ambroise

Value

Body Cookies Headers (15) Test Results ® s
Pretty Raw Preview Visualize JSON v
-
2 "status": 400,
3 "errorsPerForm": {
4 “test": {
5 fichier": {
6 “fichier": "Vous devez remplir ce champ requis”
7 ¥
8 i
9 i

10 ff

_images/custom_form_answers.png
Parameters

IP address «

=ffff:172.19.0.2

=ffff:172.19.0.2

Usage Questions

Answers ©

ambroise@roadiz.io

ambroise@roadiz.io

Untitled

6items

Q Search

Submitted date «

8/5/22

8/5/22

@ Export

Actions

_images/custom_form_post_response.png
POST v

{{baseUrl}}/api/custom_forms/:id/post

Params ® Authorization Headers (10) Body @
none @ form-data x-www-form-urlencoded
KEY
email
subject

test[fichier][]

test[message]

Body Cookies (1) Headers (17) Test Results
Pretty Raw Preview Visualize

JSON v

Pre-request Script Tests Settings
raw binary GraphQL
VALUE DESCRIPTION

ambroise@roadiz.io
Ambroise
Screenshot from 2022-08-05 11-26-38.png X

Test

@® status: 202 Accepted Tin

_images/custom_form_response.png
Subject

Email

TEST

Message

Fichier

IP address

Submitted date

Answer attribute

Ambroise

ambroise@roadiz.io

Test

screenshot_from_2022_08_05_11_26_38.png

=ffff:172.19.0.2

Friday, August 5, 2022 at 2:13:47 PM

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_images/field-types.png
Single-line text
Date and time
Date
Basic text
Aarkd
Boolean (true or false)
Integer number
Decimal number
Email
Single choice
Multiple choice
Documents
Nodes references
Children nodes
Color
Single geographic coordinates
Custom form
Multiple geographic coordinates
JSON code
CSS code
Country (ISO 3166-1 alpha-2)
YAML code
Multiple join (many to many)
Simple join (many to one)
Single relationship using a Provider
Multiple relationship using a Provider
Custom collection

_images/import_nodetype.png
Node;types

14 items

+ Addanode type

4, import nodetype

_images/embed_document.png
@ Upload

<> Embed

Random

@ Unused documents

Documents

10 items

_images/export_nodetype.png
Name

Page

Display name

Page

Node-type entity name

NsPage

Number of fields

Status.

%

Actions.

© B

_images/manage_attributes.png
A
(@)

Construction

&

Manage node-types

Manage attributes

Manage translations

Manage themes

Manage fonts

Redirections

_static/comment-bright.png

_images/manage_nodetype_fields.png
Name Display name Node-type entity Number of Status_|_Actions
name fields

Page Page Nspage v [efEa

_images/locked_user.png
test@test.com

test@test.com

2roles

v ®

_static/ajax-loader.gif

_images/login-page.jpg
Backstage

_images/manage_nodetype_toolbar.png
Construction

b Manage nodetypes
~

A3 Manage transiations

(5] Manage themes

A Manage fonts

_images/delete_nodetype.png
Name Display name Node-type entity Number of Status | Actions
name fields

Page Page Npage v [e]m

_images/node-tags-page.png
MAIN-MENU = HELLO ROADIZ!

Hello Roadiz!

Content Parameters Tags SEO % ©

Tags

List tags to link with current node *

You can use existing or new tags. You can directly create tags inside an
existing one using /"

W List tags to link with current node tems position do not matter. 88 Explorer

_images/node-parameters-panel.png
Visibilty

Hiding children

Lockstatus

Forbid children

_images/node-seo-page.png
Content Parameters Tags SEO % © En BT Ru +

Edit SEO data
~ meta-tite
Hello Roadizt

— Meta-keywords

— Meta-description

Url alias

Add an url-alias

— Urlalias *

— Translation *

English ~

+ Add url-alias

_images/node-tree.png
Node tree

+ Addanode

CEY

Hello Roadiz! -
About. -

_images/postman.png
Home Workspaces v APINetwork v Explore Q. search Postman - & 0° ’ _

2 Roadiz v2 API New Import G:7 Get a WebResponse resc 4+ oo Local public user v 2
S = °oe B~y api / nodes sources |/ Get a WebResponse resource by its path v ooo 7 El Eil
Collections
v Roadiz development app
& v api GET v {{baseUrl}}/api/web_response_by_path?path=/contact - =
APls .
> folders e . . .
Params @ Authorization Headers (7) Body Pre-request Script Tests Settings Cookies <>
B > [nodes —_— ;
" _J path /team/team-1/team-2234/team-1-6294a7e5a1d11 (Required) NodesSources path, or */* for home page
EIERES v [nodes sources = @)
properties[] item
— > GET Retrieves the collection of
Mock Servers > GET Retrieves the Archives of N... _J| properties|item] itle 5@5
o > GET Search NodesSources reso... : properties([] blocks
Monitors CET Get a WebResponse resour... : properties|item] url
GET Auth WebResponse resour...
D{g P path /contact
A GET Retrieves a NodesSources
ows .
_J -preview 1
> [Htags
[0 . Key Value Description
> translations
History
> [documents Response 7
> [attribute values
> [web_response
> [Hrealms
> 5 custom forms
> [contact form
> [Jusers
> [articles
POST token

Click Send to get a response

© Online Q Find and Replace [Console Cookies & Capture requests & Bootcamp [Runner T Trash [@

_images/node-tree-contextual.png
4 Hello Roadiz!
Add a child node

Actions

Edit node

Move to firs: pos

Move toast position

Delete node
Statuses

Hide
Unpublish

Publish offspring

PAGE

Duplicate

+

KN

= € D>

@
@

<

_images/node-tree-tab.png
MAIN-MENU = HELLO ROADIZ!

Hello Roadi

3items

Content Parameters Tags

Q search

O Ulamcorper Quam Purus

O SemElit Lorem

O Fermentum Porta Fusce

zl

SEO &

]

& Selectall

_images/node-edit-page.png
Title

Content Parameters Tags SEO % ©

Hello Roadiz!

Content

En Fr Tr Ru 4

This is Roadiz default theme. It’s made for you to create your own theme from a simple
base.

To edit this page, connect to your backstage at #+/rz-adminss

W

s

He WS We B i 0% FRERITINR-Y

Neeuds enfants

Ullamcorper Quam Purus

Sem Elit Lorem

Fermentum Porta Fusce

a

a

) (G

_images/node-parameters-page.png
— Node name *

hello-roadiz

— Mark this node as Home

— Dynamic node name

A dynamic node name willfollow any title.
changes on your default translation.

— Children nodes are ordered by *

Position -

— Children nodes order direction*

Ascendant
Createdat

Updated at

Position

Content Parameters Tags

2017-09-05 17:39

2017-11:2419:44.

SEO & O

En Fr Tr Ru 4

a

a

) (G

_images/roadiz_openid_settings.jpg
() Vidanc

Parameétres

iz}i Tous les paramétres

APIs
Development
Emailings
Openld

Site informations
Social networks

Groupes de paramétres

_images/roadiz_add_user.png
— Email *

— Username *

— Choose a new password
— Verify your password

— Groups
Admin

Backend User

n Editors

Add an user

_images/roadiz_openid_login.jpg
Backstage

Qg Se connecter avec rezo-zero.com

V'utilisateur *

_images/unused_document.png
@ Upload

< Embed

Random

@ Unused documents.

Documents

10 items

_images/toolbar_document.png
7o)

Manage documents

4280 jmg_093

_images/random_document.png
@ Upload

< Embed

Random

@ Unused documents

Documents

10 items

_images/remove_user.png

_images/quick-add-button.png
IN-MENU — HELLO ROADIZ!

lo Road

3items

rameters

Tags

izl

SEO & O

& Selectall

+ Page

a

