
Roadiz Documentation
Release 1.4.0

Ambroise Maupate, Julien Blanchet

May 27, 2020

Contents

1 Philosophy 3

2 User documentation 5
2.1 User documentation . 5

2.1.1 Write in Markdown . 6
2.1.2 Managing nodes . 9
2.1.3 Managing node-types . 19
2.1.4 Managing documents . 24
2.1.5 Managing users . 26

3 Developer documentation 31
3.1 Developer documentation . 31

3.1.1 First steps . 31
3.1.2 Node system . 47
3.1.3 Tag system . 58
3.1.4 Attributes . 60
3.1.5 Themes . 63
3.1.6 Forms . 94
3.1.7 Services . 99
3.1.8 Services list . 102
3.1.9 Serialization . 108
3.1.10 Case studies . 109
3.1.11 Contributing . 111
3.1.12 Troubleshooting . 112

4 Extension documentation 115
4.1 Extension system . 115

4.1.1 Extending Roadiz . 115
4.1.2 Events . 118
4.1.3 Extending Solr indexation . 120

Index 123

i

ii

Roadiz Documentation, Release 1.4.0

Roadiz is a polymorphic CMS based on a node system that can handle many types of services. It is based on
Symfony components, Doctrine ORM, Twig and Pimple for maximum performances and security.

Roadiz node system allows you to create your data schema and to organize your content as you want. We designed
it to break technical constraints when you create tailor-made websites architectures and layouts.

Imagine you need to display your graphic design portfolio and. . . sell some t-shirts. With Roadiz you will be able
to create your content forms from scratch and choose the right fields you need. Images and texts for your projects.
Images, texts, prices and even geolocation for your products. That’s why it’s called polymorphic.

Contents 1

Roadiz Documentation, Release 1.4.0

2 Contents

CHAPTER 1

Philosophy

When discovering Roadiz back-office interface, you will notice that there aren’t any Rich text editor also called
WYSIWYG editors. We chose to promote Markdown syntax in order to focus on content hierarchy and quality
instead of content style. Our guideline is to preserve and respect the webdesigners’ and graphic designers’ work.

You’ll see that we built Roadiz as webdesigners and for webdesigners. It will allow you to create really quickly
website prototypes using Twig templates. But as the same time you will be able to get the power of the Symfony
and Doctrine core components to build complex applications.

We also decided to be really strict about Plugins and other addons modules. How many of you do not upgrade your
Wordpress website because of plugin dependencies? We decided not to build Roadiz around a “Plugin” system
but a Theme system, as every Roadiz extensions will have to serve a theme’s features. Themes will enable you
to create awesome website layouts but also great back-office additions for your customers. You will be able to
centralize all your custom code in one place, so you can use a versioning tool such as Git.

Roadiz theme system will allow you to daisy-chain themes and dispatch features on multiple code. As our CMS
is built on Pimple dependency injection container, Roadiz can merge every available themes on the same website.
For example, you will be able to create one portfolio theme using Node-system Urls and unlimited static themes
which will use a static routing scheme, for a Forum or a Blog or even both! Theme system will even allow you to
create additional Doctrine entities and extend our back-office. Yes, just sit on your theme code and you can extend
Roadiz to create a manager for your Forum. Cherry on the cake, you can assign each theme to a specific domain
name to create mobile or media specific layouts. Believe me, this cake is not a lie.

We want Roadiz to be a great tool for designers and developers to build strong web experiences together. But we
thought of editors too! Roadiz back-office theme “Rozier” has been designed to offer every back-users a great
writing and administrating experience.

3

Roadiz Documentation, Release 1.4.0

4 Chapter 1. Philosophy

CHAPTER 2

User documentation

2.1 User documentation

Note: User documentation is on the way. We invite you to send us questions on our Gitter account or to leave
some documentation suggestions on our Github repository.

First of all, you will need to connect to Roadiz’ backoffice in order to make changes to your website contents.
To connect, you just have to write /rz-admin after your website domain name, in your browser address bar.
Then you will be able to enter your username and password that you chose during Roadiz installation or that you
received by email.

Here you can choose to keep your connection active for a couple of days, if your browser accepts cookies.

5

https://gitter.im/roadiz/roadiz
https://github.com/roadiz/docs/issues

Roadiz Documentation, Release 1.4.0

If you forgot your credentials, the Forgot password? section will ask you an email to send you a password reset
link.

Table of contents

2.1.1 Write in Markdown

Markdown is a lightweight markup language with plain text formatting syntax designed so that it can
be converted to HTML and many other formats using a tool by the same name. [. . .] The key design
goal is readability – that the language be readable as-is, without looking like it has been marked up
with tags or formatting instructions, unlike text formatted with a markup language, such as Rich Text
Format (RTF) or HTML, which have obvious tags and formatting instructions.

—Wikipedia article — https://en.wikipedia.org/wiki/Markdown

Titles

Add two hashtag # or more according to your title importance level. Backoffice shortcut buttons allow to
directly insert your titles marks before your selected text. Make sure to leave a blank line before each new title
you write.

Architecture
Modern architecture

Be careful not to use only one hashtag to create a first-level title as this is usually used for pages main title.

Alternate syntax

Main title and second level titles can be written using = and - as underline characters.

Architecture
============

Modern architecture

Bold

Insert two stars * before and after your text to set in bold. Backoffice shortcut button allows to insert directly
the 4 characters around your selected text.

This is a **bold text.** And a normal one.

Be careful not to leave whitespaces inside your stars group (in the same way you do with parenthesis) otherwise
your text won’t be styled.

Italic

Insert one star * before and after your text to set in italic. Backoffice shortcut button allows to insert directly
the 2 characters around your selected text.

This is an *italic text.* And a normal one.

Bold and italic marks can of course be combined using 3 stars before and after your selected text.

6 Chapter 2. User documentation

https://en.wikipedia.org/wiki/Markdown

Roadiz Documentation, Release 1.4.0

What if * character is already in use

Bold and italic markup can be performed using _ (underscore) character too if you actually need to write a star
character in your text.

A __3* Bed & Breakfast__ has just opened its doors in middletown.

Strike-through

Insert two tildes ~ before and after your text to strike-through.

This is ~~striked-through text~~.

Ordered and unordered lists

Insert a star * or a dash - followed by a single whitespace for each of your list item. One item per line. Leave
a blank line before and after your list. For ordered list, use a digit followed by a dot and a whitespace instead.

* A line
- An other line

* A unknown line

1. The first item
2. The second item
3. The third item

If you need to break an item into several lines, you’ll need to use the line-break markup.

Nested list

You can insert a second/third/. . . level for your list, just by leaving four spaces before your new list-item mark.

- A list item
- A sub-item
- A second sub-item

1. An ordered sub-sub-item
2. The second sub-sub-item

New paragraph and line-break

A simple line-break is always ignored by Markdown language because it makes a difference between a paragraph
and a line-break. To simply create a line-break without creating a new paragraph, leave at least 3 spaces at the
end of your text line then go to a new line.

Address:<space><space><space>
26 rue Burdeau<space><space><space>
69001 Lyon<space><space><space>
France

To create a new paragraph, always leave a blank line between your text blocks. Any additional blank line will
be ignored.

Nullam quis risus eget urna mollis ornare vel eu leo.
Cras justo odio, dapibus ac facilisis in, egestas eget quam.

2.1. User documentation 7

Roadiz Documentation, Release 1.4.0

Aenean eu leo quam. Pellentesque ornare sem lacinia
quam venenatis vestibulum.

According to your website design (CSS), new paragraphs may have no visual margins between them. Inserting
more than one blank line won’t add any additional visual space as Markdown ignores it.

Hypertext links

Write link label between braces immediately followed by the URL between parenthesis. For external links
do not forget protocol prefix http:// or https://.

[My link](http://www.google.com)

To create a internal link, just use relative notation:

[Contact us](/page/contact-us)

Then, for an email link, use mailto: prefix:

[John Doe](mailto:jdoe@example.com)

A link title can be added by inserting it before ending parenthesis wrapped in quotes.

[My link](http://www.google.com "Link to Google website")

Block quotes

Insert a > sign before each new paragraph and a space to wrap your text in a quote block. You can then use all
other Markdown symbols inside your quote.

> ### Donec ullamcorper nulla non metus auctor fringilla.
> Aenean lacinia **bibendum** nulla sed consectetur.
> Vestibulum id ligula porta felis euismod semper.

Images

Images use the link syntax with an exclamation mark prefix !. For external images do not forget to write full
URL with protocol http:// or https://.

![A cat](/files/cat.jpg)

![A cat from an other website](https://www.example.com/images/cat.jpg)

Be careful, images will be displayed as is, unless your webdesigner planned to adapt image size coming from
Markdown fields using CSS. As links, an external image may break if its owner deletes the original image. Make
sure to host critical images directly on your website and to use relative URL.

Footnotes

Footnotes are not supported with basic Markdown syntax, but the Markdown Extra one. So before using them,
make sure your webdesigner used the right Markdown parser in your theme.

Praesent commodo cursus magna[^note], Sed posuere consectetur est at
lobortis. Vel scelerisque nisl consectetur et[^othernote].

[^note]: This a footnote
[^othernote]: This a second footnote

8 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

Markdown will automatically generate anchor links between your footnote and its reference. It will automatically
use numbers as footnote reference labels, so you don’t have to bother to write numbers yourself but easy-to-
remember markers labels.

2.1.2 Managing nodes

Nodes are the most important part of Roadiz CMS. They are your content which can be shaped as you want
according to your node-types definitions. A node can be a blog-post, a content page, a photo gallery, even a shop
product. This is why we called it “Node”, it’s an abstract data container interconnected with other node in a tree.

Node-tree navigation

Node tree

Simple node-tree after installing Roadiz with Default theme.

Contextual menu for home node.

2.1. User documentation 9

Roadiz Documentation, Release 1.4.0

Each node has a place in your website, that’s why we chose to arrange your content in a tree-shaped way. It’s
intuitive and it works the same as your computer files.

• To edit a node’ content, simply click on it.

• To move a node across your tree, drag & drop using its handle (round or rombus shape). You can drop a
node after or before an other one. You can also drop inside just by moving your mouse a bit on the right,
you should see the node shadow to shift right.

• Other actions are available from each node’ contextual menu. Right click on the node or click on the arrow
at the right when you pass your mouse over.

Contextual menu actions

• Add child node: to create a content inside the current node.

• Edit node: links to the current node “edit content” page.

• Move to first position: to move a node at the first position inside its parent node.

• Move to last position: basically the same for the last position.

• Delete node: to move current node to the trashcan. A confirmation page will be prompt before really
deleting a node.

10 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

• Hide/Show: Change a node’ visibility. A hidden node won’t be displayed in Urls and your website, even if
you are an administrator.

• Publish/Unpublish: Change a node’ publication status. Unpublished nodes aren’t visible to anonymous
visitors, but visible for back-office users using preview.php entry point.

• Publish offspring: Publish a node and all its children nodes recursively.

• Duplicate: Copy all current node’ content and relationships into a new node.

Creating a node

Add buttons

“Add node” button located at the top of your node-tree.

“Add a child node” button, which is located at the top of each node’ contextual menu.

To add a blank node to your node-tree, you will need to choose your location. In Roadiz you can add a content
at the root of your tree or choose a “parent-node”. In both cases you will be asked to choose a node-type and a
node-name before creating your node.

• Node name is the global identifier for your node. It must be unique and won’t change from one translation
to an other. It can be changed later except if your developer locked it up. Node name is usually used to build
your pages URL.

• Node-type defines what fields will be available in your content. Choose well as you won’t be able to change
it later, you ’ll have to delete and recreate an other node.

Edit an existing node

Node edition page is composed in several tabs.

• Node content

• Node parameters

• Tags

• SEO

• Tree, if your node is set up as a stack

2.1. User documentation 11

Roadiz Documentation, Release 1.4.0

Node content

Contents tab is basically the main part where you will edit your node specific data, using node-type fields such as
text fields, or documents fields, etc.

This tab will display different content over translations depending on which fields are marked as universal or not.

12 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

Node parameters

Parameters are global data such as your node name. They are used for managing your node visibility according to
each user role and node back-office’ settings. This section should not be used so often as parameters will be set
once by your developer.

This tab will display the same content over translations.

Side actions and parameters

Additional parameters are available on the right action-menu. These parameters are node-wide, they will apply on
each node translations.

2.1. User documentation 13

Roadiz Documentation, Release 1.4.0

• Visibility: Hide or show current node (according to your theme)

• Hide children: Switch current node to a stack, children nodes won’t appear in the global Node-Tree any-
more. You will be able to add Stack type buttons in the node parameters tab.

• Lock status: Prevent users to delete current node or rename it. You should switch it on if your rely on some
nodes in your themes.

• Forbid children: Prevent users to create children nodes.

14 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

Tags

This tab will display the same content over translations.

2.1. User documentation 15

Roadiz Documentation, Release 1.4.0

SEO

This tab will display different content over translations.

Tree

When a node is defined as a stack, Tree becomes its default view. You can set the default ordering in the Edit tab.
And node-types set as publishable will display their publication date before its name.

16 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

Tree view becomes very interesting if you have many many children nodes, when you have blog posts or portfolio
projects for example.

Then you can add stack type in Edit tab to make some handy quick-add buttons to this view.

2.1. User documentation 17

Roadiz Documentation, Release 1.4.0

Nodes publication system

During its lifecycle, every nodes can have a different publication status. When you create a new content, it will be
automatically set as Draft by Roadiz so that you can edit it without bothering your visitors and sharing unfinished
work.

Available statuses:

• Draft: First status for new nodes

• Pending validation: It’s a medium status for user that do not have permission to publish nodes

• Published: That’s the most important status, it will set the green light to your visitor to view your content

• Archived: When you don’t want to publish a node but you don’t want to delete it either

• Deleted: It’s the last status for your nodes. Before emptying your node trashcan, every content will wait
with this status.

To improve status visibility, draft and pending nodes have a rhombus shape and published nodes have a circle
shape.

Preview unpublished nodes

As unpublished nodes are not viewable for anonymous visitors, Roadiz allows backend users to preview them
using a dedicated entry point called preview.php, yes this is not very original. We decided to create a different
entry point not to share the same URL with your public website as it could create confusing errors if your website
is hosted behing a reverse proxy engine.

For example, if your my-news page is not published yet, connecting to http://mywebsite.com/my-news
will lead to a 404 page for your anonymous visitors, as well as you too. If you want to preview it, you’ll have
to connect to http://mywebsite.com/preview.php/my-news. This URL will only allow authentified
backend users, other people will be blocked.

18 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

2.1.3 Managing node-types

This is a simple guide on how to create and manage nodes using Roadiz CLI, add and remove node fields, or even
how to import nodes.

First and foremost, you need to create a new node-type before creating any kind of node.

If you want to know more about what a node-type is, please visit the other section of the developer documentation.

When working with Roadiz in the back-office, you can easily manage node-types via the Construction icon in the
toolbar.

Add node-type

Once you have landed on the Node-Types page (https://mywebsite.com/rz-admin/node-types), you can create node-
types by clicking on Add a node-type.

Note: You can export and import a node-type if you have a .json file. See Other action for more information.

2.1. User documentation 19

Roadiz Documentation, Release 1.4.0

Upon filling the two mandatory settings Name (that developpers will use) and Display Name (that back-office
users will see), you are now ready to create your first node type.

Warning: Be careful when you name your node-type though, Name field can’t be changed once the node-type
is created. See Delete node-type section to know how to delete a node-type.

Other options (Visible, Newsletter node-type, Node-type hides its nodes and customizable color) aren’t required
and can always be altered later on.

You have now created your first node-type! It now appears on the node-type page along other node-types and you
can now manage its fields.

Delete node-type

Made a typo when creating a node-type? No longer in need of a node-type ? You can delete it by simply clicking
the trashcan icon on the Node Types page (https://mywebsite.com/rz-admin/node-types).

20 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

Adding node-type field

To add fields to your newly-created node-type, click the Manage node-type fields icon.

Then click on ‘Add a node-type field’ button.

Fill in the form to create a new field :

• Name: what developers will use

• Label: what back-office users will see

• Type: single choice option that will define the content (basic text, markdown text, documents, email, number,
single or multiple choice, children nodes etc.)

• Description, Group name, Visible, Indexed, Default values, Min length, Max length (optional)

Note: Default values is an interesting field as you can specify what kind of node-types that can be linked to this
node-type. You can also use it as a filter in the explorer, and only show those default values.

2.1. User documentation 21

Roadiz Documentation, Release 1.4.0

Other actions

From one website to another, you can export node-types as .json files.

An .json file should look like this when you open it in any editor:

{
"name": "Page",
"displayName": "Page",
"visible": true,

22 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

"publishable": false,
"reachable": true,
"newsletterType": false,
"hidingNodes": false,
"color": "#000000",
"fields": [

{
"position": 1.0,
"name": "content",
"label": "Content",
"type": 4,
"expanded": false,
"nodeTypeName": "Page",
"universal": false,
"indexed": false,
"visible": true

},
{

"position": 2.0,
"name": "children",
"label": "N\u0153uds enfants",
"type": 16,
"expanded": false,
"nodeTypeName": "Page",
"universal": false,
"indexed": false,
"visible": true

},
{

"position": 3.0,
"name": "header_image",
"label": "Header image",
"type": 9,
"expanded": false,
"nodeTypeName": "Page",
"universal": false,
"indexed": false,
"visible": true

},
{

"position": 4.0,
"name": "pictures",
"label": "Pictures",
"type": 9,
"expanded": false,
"nodeTypeName": "Page",
"universal": false,
"indexed": false,
"visible": true

}
],
"defaultTtl": 0

}

Notice the four fields that have been added to this Page node-type.

You can write an .json file yourself if you feel like it, but it is probably easier to simply export node-types from
existing website, then import it on your new website. It can be easily done by clicking on Import node-type button,
then selecting it via your explorer.

2.1. User documentation 23

Roadiz Documentation, Release 1.4.0

You are close to fully master Roadiz’ back-office powers ! Keep refering to this documention if you have any
problem, and let us know if any information goes missing.

2.1.4 Managing documents

You can manage documents via the Document icon in the toolbar. You can either upload, embed, randomly
downloaded documents, and even have a look at unused documents in your website.

Upload document

Uploading a document has never been this easy: just drag and drop the document in the designated area.

24 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

Embed document

Here is the magical part of the Documents section. You can have embedded documents from YouTube, Sound-
Cloud, Vimeo, Mixcloud, Spotify, Twitch, TED and Dailymotion, then use them as if they were images in your
content blocks.

Random document

Random is a cool feature that allows to download random documents to your website from Splashbase.

Unused document

Clicking Unused document allows you to gather every unused documents on your website, so you can clean your
database and get rid of useless documents.

2.1. User documentation 25

Roadiz Documentation, Release 1.4.0

2.1.5 Managing users

This is a simple guide on how to create and manage users using Roadiz CLI.

There are two ways of adding users, via the back-office and in command-line, both will be displayed in each
section.

When working with Roadiz in the back-office, you can easily manage users via the User system icon in the toolbar.

26 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

Add user

You can add users simply by clicking Add an user button.

If you create an user without specifying its password, an email with a password reset link will sent to your new
user. Make sure that you entered the right email and that your Roadiz website has a mailer configured. New user
will be locked unless he or she reset its password first.

2.1. User documentation 27

Roadiz Documentation, Release 1.4.0

The command-line bin/roadiz users:create loginname starts a new interactive user creation session.
You will create a new user with login and email, you can also choose if it’s a backend user and if it’s a superadmin.

Delete user

You can remove users by clicking the trashcan icon.

The command bin/roadiz users:delete loginname delete the user “loginname”.

Adding role

You can edit a users profile the same way you edit a node-type. You can add roles in the Roles tab.

If you want to add ROLE_SUPERADMIN role to “test” user, it would look like this in command-line:

bin/roadiz users:roles --add loginname
You will be prompted to choose the ROLE with auto-complete feature.

28 Chapter 2. User documentation

Roadiz Documentation, Release 1.4.0

Other action

It is possible to enable or disable users with users:enable or users:disable command. If a user doesn’t
remember his password, you can regenerate it with the users:password command. For more informations
and more actions, we invite you to check available commands with:

bin/roadiz list users

2.1. User documentation 29

Roadiz Documentation, Release 1.4.0

30 Chapter 2. User documentation

CHAPTER 3

Developer documentation

3.1 Developer documentation

Developer documentation deals with Roadiz’ inside and how to create your own themes. It requires a minimum
of Twig templating knowledge and oriented-object PHP skills.

3.1.1 First steps

Requirements

Roadiz is a web application running with PHP. It requires an HTTP server for static assets and SSH access with
out/ingoing allowed connections. Here is a short summary of mandatory elements before installing Roadiz:

• Nginx or Apache, with a dedicated virtual host as described below.

• PHP 7.2+ required

• php-gd extension

• php-intl extension

• php-xml extension

• php-curl extension

• php-mbstring extension

• JSON needs to be enabled

• ctype needs to be enabled

• Your php.ini needs to have the date.timezone setting

• You need to have at least version 2.6.21 of libxml

• PHP tokenizer needs to be enabled

• PHP OPcache + APCu (APC 3.0.17+ or another opcode cache needs to be installed)

• php.ini recommended settings

– short_open_tag = Off

31

Roadiz Documentation, Release 1.4.0

– magic_quotes_gpc = Off

– register_globals = Off

– session.auto_start = Off

• MariaDB/MySQL/PostgreSQL or SQLite database (do not forget to install php-xxxsql extension ac-
cording to your database driver flavor)

• Zip/Unzip

• cUrl

• Composer

• Git

Note: If you are using a shared hosting plan, make sure that your server’s SSH connection allows external
connections. You can verify with a simple ping google.com. If you get request timeouts, your hosting
provider might be blocking your SSH connectivity. You should consider using at least a VPS-like hosting. If you
really need to setup Roadiz on a simple shared-hosting plan, we encourage you to install it on your own computer
and send it with SFTP/FTP (it might take a long time) or rsync it.

For Nginx users

If you are using Nginx, you don’t have to enable any extensions. You only need to create your virtual host using
our example file /samples/nginx.conf.

For Apache users

If you are using Apache do not forget to enable these mods:

• mod_rewrite: enabling Roadiz front-controller system.

• mod_expires: enabling http cache headers on static assets.

And do not use built-in mod_php, prefer PHP-FPM !

Then use /samples/apache.conf template to create your virtual host configuration file. It shows how to set
rewrite and secure private folders from being viewed from public visitors.

If you do not have access to your Apache virtual host configuration, you can use the built-in htaccess generator:

bin/roadiz generate:htaccess

This command will generate .htaccess files in each critical folder to enable PHP scripts or deny public access
to forbidden folders.

Standard Edition

bin/roadiz generate:htaccess is not needed anymore with Roadiz Standard edition as you will con-
figure your Apache/Nginx root to web/ folder only. No source or configuration files will be exposed anymore.

CMS Structure

• bin/: Contains the Roadiz CLI executable

• app/: Contains every runtime resources from configuration to app cache and nodes-sources entities

32 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

– cache/: Every cache file for Twig templates and Intervention Request images (this folder must be
writable for PHP)

– conf/: Your setup configuration file(s) (this folder must be writable for PHP)

– gen-src/: Generated PHP code for Doctrine and your Node-types entities (this folder must be
writable for PHP)

– logs/: Monolog logs folder

• files/: Private documents and font files root (this folder must be writable for PHP)

• samples/: This folder contains useful configuration and example files for Apache or Nginx webservers

• web/: Your website root, it contains your application entry-points and your public assets

– files/: Public documents (this folder must be writable for PHP)

– themes/: public assets mirror for each theme, this folder contains symlinks to your themes/
YourTheme/static folder

• themes/: Contains your themes and system themes such as Rozier and Install

• vendor/: Dependencies folder managed by Composer

Install Roadiz Standard Edition

For new projects Roadiz can be easily setup using create-project command.

Create a new Roadiz project
composer create-project roadiz/standard-edition my-website
cd my-website
Create a new theme for your project and link assets
path in public folder
bin/roadiz themes:generate --symlink --relative FooBar
Go to your theme
cd themes/FooBarTheme
Install JS dependencies with npm or Yarn
yarn # or npm install
Build your new theme assets
yarn build # or npm run build

Composer will prompt you if you want to can versioning history. Choose the default answer no as we definitely
want to replace standard-edition Git with our own versioning. Then you will be able to customize every files in
your projects and save them using Git, not only your theme. Of course we added a default .gitignore file to
prevent your configuration setting and entry points to be commited in your Git history. That way you can have
different configuration on development and on your production server without bothering about merge conflicts.

Note: For Windows users, bin/roadiz themes:generate --symlink --relative FooBar
command can be used without --relative option to create absolute symlinks. You can even install your
theme assets as hard copies without --symlink option. Make sure that you call regularly bin/roadiz
themes:assets:install FooBar when using hard copy mode to update your assets. You should use
symlinks if possible to prevent update issues.

Dealing with Roadiz environments

Installation environment

Once you’ve succeeded to download Roadiz and its dependencies. You’ll have to setup its database and every
information needed to begin your website.

3.1. Developer documentation 33

https://github.com/roadiz/roadiz/releases

Roadiz Documentation, Release 1.4.0

As every Symfony applications do, Roadiz works using environments. By default, there is a production environ-
ment which is handled by index.php entry point. At this moment, if you try to connect to your fresh new
Roadiz website, you will get an error as we did not install its database and its essential data.

To be able to use Roadiz install interface, you’ll need to call the install entry point. An install.php file has
been generated when you executed composer install command. This environment will be reachable at the
Url http://mywebsite.com/install.php.

For security reasons, we added an IP filtering in this entry point, you can add your own IP address in the follow-
ing array: array('127.0.0.1', 'fe80::1', '::1', ':ffff:127.0.0.1', '::ffff:127.
0.0.1'). This IP filtering is very important if you are working on a public server, no one except you should be
able to access install entry point.

At the end of the install process, you will be invited to remove the install.php file and to connect to your
website final URL.

Development environment

Roadiz production environment is not made for developing your own themes and extending back-office features.
As the same way as install environment, we prepared a dev environment to disable resources caching and enable
debug features. You’ll find a dev.php file at your website root which was generated at composer install
command. As well as install.php entry point, you’ll need to add your own IP address to filter who can access to
your dev environment.

Preview environment

The preview environment is not a real one as it only adds a flag to Roadiz’ Kernel to enable back-office users to
see unpublished nodes. By default, it is available using preview.php entry point, unless you decide to remove
it.

Production environment

This is the default index.php entry point which will be called by all your visitors. There is no restriction
on it and it will wake up Roadiz application using the strongest caching policies. So it’s not recommended for
development usage (you would have to flush caches each time your change something in the code).

Clear cache environment

The clear_cache environment is only meant to empty Roadiz cache without waking up the whole application. It
can be useful if you are using a op-code cache like APC or native PHP OPcache. These special caches can’t be
purged from command line utilities, so you need to call a PHP script from your browser or via curl to empty
them. Like install and dev environment, clear_cache.php is IP-restricted not to allow everyone to flush your
dear caches. You’ll need to add your own IP address to filter who can access it.

Using Docker for development

Roadiz standard edition is shipped with a docker-compose example environment ready to use for develop-
ment. Docker on Linux will provide awesome performances and a production-like environment without bloating
your development machine. Performances won’t be as good on macOS or Windows hosts, but it will prevent
installing singled versioned PHP and MySQL directly on your computer.

First, copy .env.dist file to .env and configure it according to your host machine.

34 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Copy sample environment variables
and adjust them against your needs.
Especially APP_PORT when you're working on several projects
cp .env.dist .env;

Build PHP image
docker-compose build;

Create and start containers
docker-compose up -d;

Then your website will be available at http://localhost:${APP_PORT}.

For linux users, where Docker is running natively (without underlying virtualization), pay attention that PHP is
running with www-data user. You must update your .env file to reflect your local user UID during image build.

Type id command in your favorite terminal app
id
It should output something like
uid=1000(toto)

So use the same uid in your .env file before starting and building your Docker image.

USER_UID=1000

Using Vagrant for development

Roadiz comes with a dedicated Vagrantfile which is configured to run the official roadiz/
standard-edition box with a LEMP stack (Nginx + PHP7.0-FPM + MariaDB), a phpMyAdmin, a Mail-
catcher and an Apache Solr server. This will be useful to develop your website on your local computer.

Note: Git, Composer, Virtual Box and Vagrant must be setup on your local computer before going further into
Vagrant development.

• https://getcomposer.org/download/

• https://www.virtualbox.org/

• https://www.vagrantup.com/

Once you’ve created your Roadiz project, Composer should has copied samples/Vagrantfile.sample
file as Vagrantfile at your project root. Then do a vagrant up in Roadiz’ folder. Then Vagrant will run
your code in /var/www and you will be able to completely use bin/roadiz commands without bloating your
computer with lots of binaries.

Once vagrant VM has provisioned you will be able to use:

• http://192.168.33.10/install.php to proceed to install.

• http://192.168.33.10:8983/solr to use Apache Solr admin.

• http://192.168.33.10/phpmyadmin for your MySQL db admin.

• http://192.168.33.10:1080 for your Mailcatcher tool.

Do not hesitate to add an entry in your /etc/hosts file to use a local domain name instead of using the private
IP address (eg. http://site1.dev). And for each Vagrant website, do not forget to increment your private IP.

/etc/hosts
Vagrant hosts
192.168.33.10 site1.dev

3.1. Developer documentation 35

https://getcomposer.org/download/
https://www.virtualbox.org/
https://www.vagrantup.com/
https://www.vagrantup.com/
http://site1.dev

Roadiz Documentation, Release 1.4.0

192.168.33.11 site2.dev
...

Note: Be careful, Windows users, this Vagrantfile is configured to use a NFS fileshare. Disable it if you
did not setup a NFS emulator. For OS X and Linux user this is built-in your system, so have fun!

Access entry-points

web/install.php, web/clear_cache.php and web/dev.php entry points are IP restricted to local-
host. To be able to use them with a Vagrant setup, you’ll need to add your host machine IP to the $allowedIp
array. We already set two IP for you that should work for forwarded and private requests. Just uncomment the
following lines in these files and edit them if necessary.

$allowedIp = [
'10.0.2.2', // vagrant host (forwarded)
'192.168.33.1', // vagrant host (private)
'127.0.0.1', 'fe80::1', '::1' // localhost

];

Database and Solr credentials

Roadiz Vagrant box provides standard MariaDB and Apache Solr servers which run automatically at launch. Here
are their default credentials:

Database credentials

• Host: localhost

• User: roadiz

• Password: roadiz

• Database: roadiz or roadiz_test (for executing unit tests)

Solr credentials

• Host: localhost

• Core: roadiz or roadiz_test (for executing unit tests)

• User: none

• Password: none

Warning: Of course, this Vagrant virtual machine should not be used for any production environment. You
can find provisioning scripts on our Github repository, feel free to make enhancement sugggestions about
them.

Full config.yml example for Vagrant

36 Chapter 3. Developer documentation

https://github.com/roadiz/vagrant-box

Roadiz Documentation, Release 1.4.0

appNamespace: "my-roadiz-project"
timezone: "Europe/Paris"
doctrine:

driver: "pdo_mysql"
host: "localhost"
user: "roadiz"
password: "roadiz"
dbname: "roadiz"
charset: utf8mb4
default_table_options:

charset: utf8mb4
collate: utf8mb4_unicode_ci

cacheDriver:
type: ~
host: ~
port: ~

security:
secret: "my-roadiz-project"

mailer:
type: ~
host: "localhost"
port: 25
encryption: false
username: ""
password: ""

entities:
- ../vendor/roadiz/roadiz/src/Roadiz/Core/Entities
- ../vendor/roadiz/models/src/Roadiz/Core/AbstractEntities
- gen-src/GeneratedNodeSources

rememberMeLifetime: 2592000
additionalServiceProviders: []
additionalCommands: []
assetsProcessing:

driver: gd
defaultQuality: 90
maxPixelSize: 1920
jpegoptimPath: /usr/bin/jpegoptim
pngquantPath: /usr/bin/pngquant

solr:
endpoint:

localhost:
host: "localhost"
port: "8983"
path: "/solr"
core: "roadiz"
timeout: 3
username: ""
password: ""

Using PHP server for development

If Vagrant is too heavy for your purpose, you can simply use PHP built-in server.

Following command will launch a web-server listening on all IP addresses on port 8080. We also use a dedicated
router file to serve static and generated resources:

Create a new Roadiz project
composer create-project roadiz/standard-edition
Create a new theme for your project
cd standard-edition

3.1. Developer documentation 37

Roadiz Documentation, Release 1.4.0

bin/roadiz themes:generate --symlink --relative FooBar

Launch PHP server with web folder as root
php -S 0.0.0.0:8080 -t web vendor/roadiz/roadiz/conf/router.php
OR use Makefile recipe
make dev-server

Standard Edition has a Makefile recipe for launching internal PHP server with a chosen port and IP: make
dev-server.

If you want to use PHP internal server, make sure you have installed all required PHP extensions and that you
have a database server:

• You can use a local MySQL/MariaDB server

• Or use a SQLite3 database, just use ../app/conf/database.db3 path during install.

PHP web server was designed to aid application development. It may also be useful for testing
purposes or for application demonstrations that are run in controlled environments. It is not intended
to be a full-featured web server. It should not be used on a public network.

Use Mailhog to catch outgoing emails

Contrary to Vagrant, using PHP built-in server does not provide any additional tool such as Mailcatcher or Apache
Solr. You can setup Mailhog to catch outgoing emails in a clean web interface.

On macOS, use HomeBrew: brew update && brew install mailhog, then configure your PHP
sendmail_path to use it.

Manual configuration

This section explains how main configuration file app/conf/config.yml works. It is way more more con-
venient than launching Install theme for each configuration update.

Your app/conf/config.yml file is built using YAML syntax. Each part matches a Roadiz service configu-
ration.

Note: By default, every Roadiz environment read app/conf/config.yml configuration file. But you can
specify different files for dev and test environments. Just create a app/conf/config_dev.yml or app/
conf/config_test.yml file to override default parameters. You will be able to use a different database,
mailer or Solr instance not to pollute your production environment.

Source Edition

Roadiz Source edition stores configuration files in conf/ folder.

Doctrine

The most important configuration section deals with database connection which is handled by Doctrine:

doctrine:
driver: "pdo_mysql"
host: "localhost"
user: ""
password: ""
dbname: ""

38 Chapter 3. Developer documentation

https://github.com/mailhog/MailHog

Roadiz Documentation, Release 1.4.0

Roadiz uses Doctrine ORM to store your data. It will directly pass this YAML configuration to Doctrine so
you can use every available drivers and options from its documentation at http://doctrine-dbal.readthedocs.org/en/
latest/reference/configuration.html

Themes

Since Roadiz v1.0, themes are statically registered into Roadiz configuration for better performances and delaying
database usage. You have to register any front-end theme in your app/conf/config.yml file. Theme priority
is not handled here but in each of your themes by overriding static $priority value;

themes:
-

classname: \Themes\DefaultTheme\DefaultThemeApp
hostname: '*'
routePrefix: ''

-
classname: \Themes\FooBarTheme\FooBarThemeApp
hostname: 'foobar.test'
routePrefix: ''

You can define hostname specific themes and add a route-prefix for your routing. Defaults values are '*' for the
hostname and '' (empty string) for the route-prefix.

Warning: No theme configuration will lead into a 404 error on your website home page. But you will still
have access to the back-office which is now hard-registered into Roadiz configuration.

Cache drivers

When set as null, cache drivers will be automatically chosen by Roadiz according to your PHP setup and available
extensions.

Sometimes, if a cache extension is available but you don’t want to use it, you’ll have to specify a cache driver
type (use array to disable caches). This is a known case when using OVH shared hosting plans which provide
memcached PHP extension but does not let you log in.

cacheDriver:
type: null
host: null
port: null

Available cache types are:

• apc

• xcache

• memcache (requires host and port configuration)

• memcached (requires host and port configuration)

• redis (requires host and port configuration)

• array

Monolog handlers

By default, Roadiz writes its logs to app/logs/ folder in a file named after your running environment (eg.
roadiz_prod.log). But you can also customize Monolog to use three different handlers. Pay attention that

3.1. Developer documentation 39

http://doctrine-dbal.readthedocs.org/en/latest/reference/configuration.html
http://doctrine-dbal.readthedocs.org/en/latest/reference/configuration.html

Roadiz Documentation, Release 1.4.0

using custom log handlers will disable default Roadiz logging (except for Doctrine one) so it could be better to
always use default handler along a custom one.

Available handler types:

• default: Reproduce the Roadiz default handler which writes to app/logs/ folder in a file named after
your running environment

• stream: Defines a log file stream on your local system. Your path must be writable!

• syslog: Writes to system syslog.

• gelf: Send GELF formatted messages to an external entry point defined by url value. Roadiz uses a fault
tolerant handler which won’t trigger any error if your path is not reachable, so make sure it’s correct. It’s
a good idea to combine a gelf handler with a local logging system if your external entry point is down.

• sentry: Send logs to your Sentry instance. Requires sentry/sentry PHP library: composer
require sentry/sentry php-http/curl-client guzzlehttp/psr7. It’s a good idea to
combine a sentry handler with a local logging system if your external entry point is down.

type and level values are mandatory for each handlers.

Here is an example configuration:

monolog:
handlers:

default:
type: default
level: INFO

file:
type: stream
Be careful path must be writable by PHP
path: /var/log/roadiz.log
level: INFO

syslog:
type: syslog
Use a custom identifier
ident: my_roadiz
level: WARNING

graylog:
type: gelf
Gelf HTTP entry point url (with optional user:passwd authentication)
url: http://graylog.local:12202/gelf
level: WARNING

sentry:
type: sentry
level: WARNING
url: https://xxxxxx:xxxxxx@sentry.io/1

Solr endpoint

Roadiz can use an Apache Solr search-engine to index nodes-sources. Add this to your config.yml to link your
CMS to your Solr server:

solr:
endpoint:

localhost:
host: "localhost"
port: "8983"
path: "/"
core: "mycore"
timeout: 3
username: ""
password: ""

40 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Roadiz CLI command can easily handle Solr index. Just type ./bin/roadiz solr:check to get more
informations.

Reverse proxy cache invalidation

Roadiz can request cache invalidation to external and internal cache proxies such as internal Symfony AppCache
or a Varnish instance. If configured, Roadiz will create a BAN request to each configured proxy when user clears
back-office caches, and it will create a PURGE request on each node-source update event using first reachable
node-source URL.

reverseProxyCache:
frontend:

localhost:
host: localhost
domainName: myapp.test

external:
host: varnish
domainName: myapp.test

Note: Make sure you configured your external reverse proxy in order to receive and handle BAN and PURGE
HTTP requests.

Entities paths

Roadiz uses Doctrine to map object entities to database tables. In order to make Roadiz more extensible, you can
add your own paths to the entities part.

entities:
- "../vendor/roadiz/roadiz/src/Roadiz/Core/Entities"
- "../vendor/roadiz/models/src/Roadiz/Core/AbstractEntities"
- "gen-src/GeneratedNodeSources"

Configure mailer

Roadiz uses Swift Mailer to send emails. This awesome library is built to enable different kinds of mail transports
and protocols. By default, Roadiz uses your PHP sendmail configuration but you can tell it to use another
transport (such as an external SMTP server) in your app/conf/config.yml file.

You can use SSL, TLS or no encryption at all.

mailer:
type: "smtp"
host: "localhost"
port: 25
encryption: false
username: ""
password: ""

Note: Pay attention that many external SMTP services (Mandrill, Mailjet. . .) only accept email from validated
domains. So make sure that your application uses a known From: email sender not to be blacklisted or blocked
by these services. If you need your emails to be replied to an anonymous address, use ReplyTo: header instead.

3.1. Developer documentation 41

https://github.com/roadiz/roadiz/blob/develop/samples/varnish_default.vcl

Roadiz Documentation, Release 1.4.0

Images processing

Roadiz use Image Intervention library to automatically create a lower quality version of your image if they are too
big. You can define this threshold value in the assetsProcessing section. driver and defaultQuality
will be also use for the on-the-fly image processing with Intervention Request library.

assetsProcessing:
gd or imagick (gd does not support TIFF and PSD formats)
driver: gd
defaultQuality: 90
pixel size limit () after roadiz
should create a smaller copy.
maxPixelSize: 1280
Path to jpegoptim binary to enable jpeg optimization
jpegoptimPath: ~
Path to pngquant binary to enable png optimization (3x less space)
pngquantPath: ~
List additionnal Intervention Request subscribers
subcribers: []

Additional Intervention Request subscribers

Any Intervention Request subscriber can be added to configuration with its classname and its constructor
arguments. Here is an example with WatermarkListener which will print some text on all your images.

assetsProcessing:
List additionnal Intervention Request subscribers
subcribers:

- class: "AM\\InterventionRequest\\Listener\\WatermarkListener"
args:

- 'Copyright 2017'
- 3
- 50
- "#FF0000"

Use kraken.io to reduce drastically image sizes

Since you can add Intervention Request subscribers, we created a useful one that sends every images to kraken.io
services to shrink them. Once you’ve configured it, do not forget to empty your caches and image caches to see
changes.

assetsProcessing:
List additionnal Intervention Request subscribers
subcribers:

- class: "AM\\InterventionRequest\\Listener\\KrakenListener"
args:

- "your-api-key"
- "your-api-secret"
- true

Warning: Take note that each generated image is sent to kraken.io servers. It can generate some overhead
time on the first time you request an image.

42 Chapter 3. Developer documentation

http://image.intervention.io/
https://github.com/ambroisemaupate/intervention-request
https://kraken.io/

Roadiz Documentation, Release 1.4.0

Console commands

Roadiz can be executed as a simple CLI tool using your SSH connection. This is useful to handle basic adminis-
tration tasks with no need of backoffice administration.

./bin/roadiz

If your system is not configured to have php located in /usr/bin/php use it this way:

php ./bin/roadiz

Default command with no arguments will show you the available commands list. Each command has its own
parameters. You can use the argument --help to get more informations about each tool:

./bin/roadiz install --help

We even made Doctrine CLI tools directly available from Roadiz Console. Be careful, these are powerful com-
mands which can alter your database and make you lose precious data. Especially when you will need to update
your database schema after a Theme or a Core update. Always make a database back-up before any Doctrine
operation.

Additional commands

If you are developing your own theme, you might need to create some custom CLI commands.
Roadiz can handle additional commands if you add them in your app/conf/config.yml as
you would do for any additional entities. Make sure that every additional commands extend
Symfony\Component\Console\Command\Command class.

additionalCommands:
- \Themes\DefaultTheme\Commands\DefaultThemeCommand

Upgrading

Note: Always do a database backup before upgrading. You can use the mysqldump or pg_dump tools to
quickly export your database as a file.

• With Roadiz command (MySQL only): bin/roadiz database:dump -c will generate a SQL file in
app/ folder

• With a MySQL server: mysqldump -u[user] -p[user_password] [database_name] >
dumpfilename.sql

• With a PostgreSQL server: pg_dump -U [user] [database_name] -f dumpfilename.sql

Use Composer to update dependencies or Roadiz itself with Standard edition, make sure that your Roadiz version
constraint is set in your project composer.json file, then:

composer update -n --no-dev;

In order to avoid losing sensible node-sources data. You should regenerate your node-source entities classes files:

bin/roadiz generate:nsentities;

Then run database schema update, first review migration details to see if no data will be removed:

bin/roadiz orm:schema-tool:update --dump-sql;

3.1. Developer documentation 43

Roadiz Documentation, Release 1.4.0

Then, if migration summary is OK (no data loss), perform the following changes:

bin/roadiz orm:schema-tool:update --force;
Clear cache for each environment
bin/roadiz cache:clear -e dev
bin/roadiz cache:clear -e prod
bin/roadiz cache:clear -e prod --preview
bin/roadiz cache:clear-fpm -e dev
bin/roadiz cache:clear-fpm -e prod
bin/roadiz cache:clear-fpm -e prod --preview

Note: If you are using an OPcode cache like XCache or APC, you’ll need to purge cache manually because it
can’t be done from a CLI interface as they are shared cache engines. As a last chance try, you can restart your
php-fpm service.

Moving a website to another server

Before moving your website, make sure you have backed up your data:

• Dump your database, using classic mysqldump or pg_dump tools. If you’re using MySQL bin/roadiz
database:dump -c command can speed-up the process by naming automatically your file against your
app-namespace.

• Archive your files using bin/roadiz files:export, Roadiz will create a ZIP file with your pub-
lic/private documents and fonts.

Moving to a SSH+Git hosting plan or an other development machine

From this point you can install your new web-server, as described in Install section. Pay attention that if your
theme needs some additional composer dependencies you should clone/copy it into your themes/ folder before
running composer install --no-dev.

Then import your dump and files into your new server.

Once you’ve imported your database, you must edit manually your conf/config.yml, you can reuse the former
server’s one and adapt its database credentials.

Warning: Do not perform any schema update if no app/gen-src/GeneratedNodeSources classes is avail-
able, it will erase your NodesSources data as their entities files haven’t been generated yet.

When you have edited your app/conf/config.yml file, regenerate your Doctrine entities class files:

bin/roadiz generate:nsentities;

Now you can perform a schema update without losing your nodes data:

bin/roadiz orm:schema-tool:update --dump-sql;
bin/roadiz orm:schema-tool:update --force;
bin/roadiz cache:clear -e prod
bin/roadiz cache:clear -e prod --preview
bin/roadiz cache:clear-fpm -e prod
bin/roadiz cache:clear-fpm -e prod --preview

Note: If you are using an OPcode cache like XCache or APC, you’ll need to purge cache manually because it
can’t be done from a CLI interface as they are shared cache engines. The most effective way is to restart your

44 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

PHP-FPM service or Apache if your are using mod_php.

Install assets

By default, web theme assets are not tracked by Git. Make sure that you installed every theme assets using bin/
roadiz themes:assets:install command. You should use --symlink --relative options when
possible to prevent updating assets manually. For Windows users, remove --relative option to create absolute
symlinks.

bin/roadiz themes:assets:install --symlink --relative Debug;
bin/roadiz themes:assets:install --symlink --relative Install;
bin/roadiz themes:assets:install --symlink --relative Rozier;
Then your theme (FooBarTheme)
bin/roadiz themes:assets:install --symlink --relative FooBar;

composer.json file should execute Roadiz default themes asset install automatically after each update or install.

Synchronize documents and fonts

You can move your files/ folder using SFTP but the best way is to use rsync command as it will upload only
newer files and it is much faster.

This will synchronize files on your production server from your local Roadiz
→˓setup.
Do not forget ending slash after each path!
rsync -avcz -e "ssh -p 22" /path/to/roadiz/files/ user@my-prod-server.com:/path/to/
→˓roadiz/files/
rsync -avcz -e "ssh -p 22" /path/to/roadiz/web/files/ user@my-prod-server.com:/
→˓path/to/roadiz/web/files/

It works in the other way too. If you want to work on your local copy with up to date files and fonts, you can
download actual files from the production website:

This will synchronize files on your local development server from your
→˓production server.
Do not forget ending slash after each path!
rsync -avcz -e "ssh -p 22" user@my-prod-server.com:/path/to/roadiz/files/ /path/to/
→˓roadiz/files/
rsync -avcz -e "ssh -p 22" user@my-prod-server.com:/path/to/roadiz/web/files/ /
→˓path/to/roadiz/web/files/

Moving to a non-SSH hosting plan

You have nearly finished your brand new website using Roadiz. You have been working on your own server using
Git and Composer, up to this point everything went well.

Now you have to push to production, but your prod-server has no SSH connection. You are stuck with an SFTP
connection or worst, an old FTP one. Don’t panic, it will take a little more time but it is still possible.

Warning: Many shared-plan hosting companies offer you only one or two databases. When moving a Roadiz
website, make sure that your database is empty and do not contain orphan tables, you must respect the rule
“One app = One database”.

3.1. Developer documentation 45

Roadiz Documentation, Release 1.4.0

Note: If you can ZIP on your production server or if you are going to push your files via FTP, do not forget to
exclude .git and node_modules folders! These folders have lots of useless files for a production SSH-less
environment. Here is a sample ZIP command to exclude them: zip -r mywebsite.zip mywebsite/
-x "mywebsite/.git/*" "mywebsite/themes/**/static/node_modules/*".

• Before transferring your website, make sure you have .htaccess file in every sensitive folders. You can
use the bin/roadiz generate:htaccess on your computer.

• If you have at least SFTP, you should have to rights to zip/unzip on your distant server. So zip the whole
Roadiz folder.

• If you only have FTP, you must be prepared to transfer your Roadiz folder, file-by-file. Just get yourself a
nice cup of coffee.

• Once everything is copied on your production server, verify than you have the same files as on your dev-
server.

• Import your database dump with phpmyadmin or pgmyadmin.

• Edit your conf/config.yml to match your new database credentials.

• Verify that root .htaccess file contains every information to enable Apache url-rewriting.

• Try to connect to your website

• If it doesn’t work or display anything, read your PHP log file to understand where the problem comes from.
It might be your database credentials or an outdated PHP version. Check that your hosting manager has
installed every needed PHP extensions, see Requirements.

Install Standard Edition on shared hosting

. . . without SSH commands and FTP .

Modern CMS built on Composer and CLI commands can’t be deployed easily on shared hosting environments on
which only FTP is available. Here are some handy tools to deploy a Roadiz with FTP.

The first condition is that you’ll have to setup a local environment which will be mirrored to your shared hosting
FTP, vendor/ included. . . yes. Grab a very long cup of coffee when you initiate the first FTP push, it will be
long, very long. Next pushes will only push newer files.

The second condition is that you must create all your node-type entities on your local env first to be able to mirror
all GeneratedNodeSources* classes as you won’t be able to generate them on your production env.

Prepare your local env with Makefile

Standard-edition comes with a sample Makefile so you can write a push-prod recipe to automatize all
process using lftp command. Make sure it’s installed on your computer:

macOS
brew install lftp
Ubuntu/Debian
apt-get install lftp
...

This recipe will clear your cache files, generate Apache .htaccess files, copy your theme assets as real files,
mirror all necessary files without all exceptions (list can be improved) then copy your theme assets back to sym-
links.

push-prod:
make cache
bin/roadiz generate:htaccess

46 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

bin/roadiz themes:assets:install ${THEME_PREFIX}
lftp -e "mirror --only-newer --parallel=3 -R \

--exclude '/\..+/$$' \
-x 'app/conf/config\.yml' \
-x '\.env' \
-x '(README\.md|Makefile|Dockerfile|Vagrantfile)' \
-x '(bin|docker|samples|tmp|\.git|\.idea|files)/' \
-x 'app/(cache|logs|sessions|tmp)/' \
-x 'web/files/' \
-x 'node_modules/' \
-x 'bower_components/' \
-x 'themes/${THEME}/(app|node_modules|webpack)/' \
-x '\.(psd|rev|log|cmd|bat|pif|scr|exe|c?sh|reg|vb?|ws?|sql|db)$$' \
./ ${FTP_REMOTE_PATH}" -u ${FTP_USER},${FTP_PASS} ${FTP_HOST}

bin/roadiz themes:assets:install --relative --symlink ${THEME_PREFIX}

Make sure your configuration matches your shared hosting plan, for example, adjust your cache driver to file,
php to get decent performances.

cacheDriver:
type: file
host: null
port: null

3.1.2 Node system

Node-types, nodes-sources and nodes

This part is the most important part of Roadiz. Quite everything in your website will be a node.

Let’s check this simple node schema before explain it.

Now, it’s time to explain how it’s working!

3.1. Developer documentation 47

Roadiz Documentation, Release 1.4.0

What is a Node-type

A node-type is the blueprint for your node-source. It will contain all fields that Roadiz will use to generate an
extended node-source class.

For example, a node-type “Page” will contain “content” and “header image” fields. The “title” field is always
available as it is hard-coded in NodesSources class. After saving your node-type, Roadiz generates a NSPage
class which extends the NodesSources class. You will find it in the gen-src/GeneratedNodeSources
(or app/gen-src/GeneratedNodeSources with Roadiz Standard edition). Then Roadiz calls Doctrine
update tool to migrate your database schema. Do not modify the generated class. You’ll have to update it by the
backend interface.

Here is a schema to understand how node-types can define custom fields into node-sources:

48 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Most of node-types management will be done in your backoffice interface. You will be able to create, update node-
types objects and each of their node-type fields independently. But if you prefer, you can use CLI commands to
create types and fields. With Roadiz CLI commands you get several tools to manage node-types. We really
encourage you to check the commands with --help argument, as following:

bin/roadiz nodetypes:add-fields
bin/roadiz nodetypes:create
bin/roadiz nodetypes:delete
bin/roadiz nodetypes:list

Keep in mind that each node-type or node-type fields operation require a database update as Doctrine have to
create a specific table per node-type. Do not forget to execute bin/roadiz orm:schema-tool:update
tools to perform updates. It’s very important to understand that Doctrine needs to see your node-types generated
classes before upgrading database schema. If they don’t exist, it won’t able to create your custom types tables, or
worst, it could delete existing data since Doctrine won’t recognize specific tables.

Now let’s have a look on node-sources.

Node-sources and translations

Once your node-type created, its definition is stored in database in node_types and node_type_fields
tables. This informations will be only used to build your node-sources edition forms in backoffice and to build a
custom database table.

3.1. Developer documentation 49

Roadiz Documentation, Release 1.4.0

Inheritance mapping

With Roadiz, each node-types data (called node-sources) is stored in a different table prefixed with ns_. When you
create a Page node-type with 2 fields (content and excerpt), Roadiz tells Doctrine to build a ns_page table with
2 columns and one primary key column inherited from nodes_sources table. It’s called inheritance mapping:
your ns_page table extends nodes_sources table and when you are querying a Page from database, Doctrine
mix the data coming from these 2 tables to create a complete node-source.

At the end your node-source Page won’t contain only 2 fields but many more as NodesSources entity offers
title, metaTitle, metaDescription, metaKeywords and others useful data-fields which can be used
among all node-types.

Translations

Node-sources inheritance mapping is not only used to customize data but to make data translations available. As
you saw in the first picture, each nodes can handle many node-sources, one per translation.

Node-type fields

Roadiz can handle many types of node-type fields. Here is a complete list:

Note: Title, meta-title, meta-description and keywords are always available since they are stored directly inside
NodesSources entity. Then you will be sure to always have a title no matter the node-type you are using.

Simple data

This following fields stores simple data in your custom node-source database table.

• Single-line text

• Date

• Date and time

• Basic text

• Markdown text

• Boolean

• Integer number

• Decimal number

• Email

• Color

• Single geographic coordinates

• JSON code

• CSS code

• Country code (ISO 3166-1 alpha-2)

• YAML code

• Many to many join

• Many to one join

• Single relationship using a provider

50 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

• Multiple relationship using a provider

• Custom collection

Note: Single geographic coordinates field stores its data in JSON format. Make sure you don’t have manually
writen data in its input field.

Warning: To use Single geographic coordinates you must create a Google API Console account with Maps
API v3 activated. Then, create a Browser key and paste it in “Google Client ID” parameter in Roadiz settings
to enable geographic node-type fields. If you didn’t do it, a simple text input will be display instead of Roadiz
Map Widget.

Virtual data

Virtual types do not really store data in node-source table. They display custom widgets in your editing page to
link documents, nodes or custom-forms with your node-source.

• Documents

• Nodes references

• Custom form

Complex data

These fields types must be created with default values (comma separated) in order to display available default
choices for “select-box” types:

• Single choice

• Multiple choices

• Children nodes

Children node field type is a special virtual field that will display a custom node-tree inside your editing page. You
can add quick-create buttons by listing your node-types names in default values input, comma separated.

3.1. Developer documentation 51

Roadiz Documentation, Release 1.4.0

Universal fields

If you need a field to hold exactly the same data for all translations, you can set it as universal. For example for
documents, numeric and boolean data that do not change from one language to another.

It will duplicate data at each save time from default translation to others. It will also hide the edit field from
non-default translation to avoid confusion.

YAML field

When you use YAML field type, you get an additional method to return your code already parsed. If your field is
named data, your methods will be generated in your NSEntity as getData() and getDataAsObject().

• getData() method will return your YAML code as string.

• getDataAsObject() will return a mixed data,array or stdObject according to your code formatting.
This method will throw a \Symfony\Component\Yaml\Exception\ParseException if your
YAML code is not valid.

Many to many and Many to one joins

You can create custom relations between your node-source and whatever Doctrine entities in Roadiz or in your
theme.

You must fill the default values field for these two types.

Entity class name
classname: Themes\MyTheme\Entities\City
Displayable is the method used to display entity name
displayable: getName
Same as Displayable but for a secondary information
alt_displayable: getZipCode
Searchable entity fields
searchable:

- name
- slug

orderBy:
- field: slug

direction: ASC

Single and multiple provider

The generic provider type allow you to fetch every data you want through a Provider class in your theme. This
can be really useful if you need to fetch items from an external API and to reference them in your nodes-sources.

Imagine that you want to link your page with an Instagram post. You’ll have to create a class that extends
Themes\Rozier\Explorer\AbstractExplorerProvider and configure it in your field:

classname: Themes\MyTheme\Provider\ExternalApiProvider

This provider will implement getItems, getItemsById and other methods from
ExplorerProviderInterface in order to be able to display your Instagram posts in Roadiz
explorer widget and to find your selected items back. Each Instagram post will be wrapped in a
Themes\Rozier\Explorer\AbstractExplorerItem that will map your custom data to the right
fields to be showed in Roadiz back-office.

You’ll find an implementation example in Roadiz with Themes\Rozier\Explorer\SettingsProvider
and Themes\Rozier\Explorer\SettingExplorerItem. These classes do not fetch data from an API
but from your database using EntityListManager.

52 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Single and multiple provider types can accept additional options too. If you want to make your provider config-
urable at runtime you can pass options in your field configuration.

classname: Themes\MyTheme\Provider\ExternalApiProvider
options:

- name: user
value: me

- name: access_token
value: xxxxx

Then you must override your provider’ configureOptions method to add which options are allowed.

use Symfony\Component\OptionsResolver\OptionsResolver;

/**
* @param OptionsResolver $resolver

*/
public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults([
'page' => 1,
'search' => null,
'itemPerPage' => 30,
// add more default options here
'user' => 'me',

]);
// You can required options
$resolver->setRequired('access_token');

}

Custom collection

Last but not least, you can create a custom collection field to store read-only data using a dedicated Symfony
AbstractType.

You must fill the default values field for this type:

AbstractType class name
entry_type: Themes\MyTheme\Form\FooBarType

You must understand that custom collection data will be stored as JSON array in your database. So you won’t be
able to query your node-source using this data.

In your FooBarType, you’ll be able to use Symfony standard fields types and Roadiz non-virtual fields too such
as MarkdownType, JsonType, YamlType.

Handling nodes and their hierarchy

By default, if you use Entities API methods or trasversing Twig filters, Roadiz will automatically handle security
parameters such as node.status and preview mode.

// Secure method to get node-sources
// Implicitly check node.status
$this->get('nodeSourceApi')->getBy([

'node.nodeType' => $blogPostType,
'translation' => $translation,

], [
'publishedAt' => 'DESC'

]);

3.1. Developer documentation 53

Roadiz Documentation, Release 1.4.0

This first code snippet is using Node-source API. This will automatically check if current user is logged-in and if
preview mode is ON to display or not unpublished nodes.

// Insecure method to get node-sources
// Doctrine raw method will get all node-sources
$this->get('em')->getRepository('GeneratedNodeSources\NSBlogPost')->findBy([], [

'publishedAt' => 'DESC',
'translation' => $translation,

]);

This second code snippet uses standard Doctrine Entity Manager to directly grab node-sources by their entity
class. This method does not check any security and will return every node-sources, even unpublished, archived
and deleted ones.

Hierarchy

To trasverse node-sources hierarchy, the easier method is to use Twig filters on your nodeSource entity. Filters
will implicitly set translation from origin node-source.

{% set children = nodeSource|children %}
{% set nextSource = nodeSource|next %}
{% set prevSource = nodeSource|previous %}
{% set parent = nodeSource|parent %}

{% set children = nodeSource|children({
'node.visible': true

}) %}

Warning: All these filters will take care of publication status and translation, but not publication date-time
neither visibility.

{% set children = nodeSource|children({
'node.visible': true,
'publishedAt': ['>=', date()],

}, {
'publishedAt': 'DESC'

}) %}

{% set nextVisible = nodeSource|next({
'node.visible': true

}) %}

If you need to trasverse node-source graph from your controllers you can use the Entity API. Moreover, Nodes-
sources API allows you to filter using custom criteria if you choose a specific NodeType.

$children = $this->get('nodeSourceApi')->getBy([
'node.parent' => $nodeSource,
'node.visible' => true,
'publishedAt' => ['>=', new \DateTime()],
'translation' => $nodeSource->getTranslation(),

],[
'publishedAt' => 'DESC'

]);

Warning: Browsing your node graph (calling children or parents) could be very greedy and unoptimized
if you have lots of node-types. Internally Doctrine will inner-join every nodes-sources tables to perform

54 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

polymorphic hydratation. So, make sure you filter your queries by one NodeType as much as possible with
nodeSourceApi and node.nodeType criteria.

// Here Doctrine will only join NSPage table to NodesSources
$children = $this->get('nodeSourceApi')->getBy([

'node.nodeType' => $this->get('nodeTypesBag')->get('Page'),
'node.parent' => $nodeSource,
'node.visible' => true,
'publishedAt' => ['>=', new \DateTime()],
'translation' => $nodeSource->getTranslation(),

],[
'publishedAt' => 'DESC'

]);

Visibility

There are two parametres that you must take care of in your themes and your controllers, because they are not
mandatory in all website cases:

• Visibility

• Publication date and time

For example, publication date and time won’t be necessary in plain text pages and not timestampable contents.
But we decided to add it directly in NodesSources entity to be able to filter and order with this field in Roadiz
back-office. This was not possible if you manually create your own publishedAt as a node-type field.

Warning: Pay attention that publication date and time (publishedAt) and visibility (node.visible)
does not prevent your node-source from being viewed if you did not explicitly forbid access to its controller.
This field is not deeply set into Roadiz security mechanics.

If you need so, make sure that your node-type controller checks these two fields and throws a
ResourceNotFoundException if they’re not satisfied.

class BlogPostController extends MyAwesomeTheme
{

public function indexAction(
Request $request,
Node $node = null,
Translation $translation = null

) {
$this->prepareThemeAssignation($node, $translation);

$now = new DateTime("now");
if (!$nodeSource->getNode()->isVisible() ||

$nodeSource->getPublishedAt() < $now) {
throw new ResourceNotFoundException();

}

return $this->render(
'types/blogpost.html.twig',
$this->assignation

);
}

}

3.1. Developer documentation 55

Roadiz Documentation, Release 1.4.0

Publication workflow

Each Node state is handled by a Workflow to switch between the following 5 states:

States

• Node::DRAFT

• Node::PENDING

• Node::PUBLISHED

• Node::ARCHIVED

• Node::DELETED

Transitions

• review

• reject

• publish

• archive

• unarchive

• delete

• undelete

You cannot changes a Node status directly using its setter, you must use Roadiz main registry to perform transition.
This can prevent unwanted behaviours and you can track changes with events and guards:

/** @var Registry $registry */
$registry = $this->get('workflow.registry');
if ($registry->get($node)->can($node, 'publish')) {

$registry->get($node)->apply($node, 'publish');
}

Generating paths and url

You can use generateUrl() in your controllers to get a node-source’ path or url. In your Twig template, you
can use path method as described in Twig section: Generating paths and url.

class BlogPostController extends MyAwesomeTheme
{

public function indexAction(
Request $request,
Node $node = null,
Translation $translation = null

) {
$this->prepareThemeAssignation($node, $translation);

// Generate a path for current node-source
$path = $this->generateUrl($this-nodeSource);

// Generate an absolute URL for current node-source
$absoluteUrl = $this->generateUrl(

$this->nodeSource,
[],

56 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

UrlGeneratorInterface::ABSOLUTE_URL
);

}
}

Overriding default node-source path generation

You can override default node-source path generation in order to use {{ path() }} method
in your Twig templates but with a custom logic. For example, you have a Link node-
type which purpose only is to link to an other node in your website. When you call path
or URL generation on it, you should prefer getting its linked node path, so you can listen to
RZ\Roadiz\Core\Events\NodesSources\NodesSourcesPathGeneratingEvent:class
event and stop propagation to return your linked node path instead of your link node path.

use GeneratedNodeSources\NSLink;
use Symfony\Component\EventDispatcher\EventDispatcherInterface;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use RZ\Roadiz\Core\Events\NodesSources\NodesSourcesPathGeneratingEvent;

class LinkPathGeneratingEventListener implements EventSubscriberInterface
{

public static function getSubscribedEvents()
{

return [
NodesSourcesPathGeneratingEvent:class => ['onLinkPathGeneration']

];
}

/**
* @param NodesSourcesPathGeneratingEvent $event

* @param string $eventName

* @param EventDispatcherInterface $dispatcher

*/
public function onLinkPathGeneration(

NodesSourcesPathGeneratingEvent $event,
$eventName,
EventDispatcherInterface $dispatcher

) {
$nodeSource = $event->getNodeSource();

if ($nodeSource instanceof NSLink) {
if (filter_var($nodeSource->getExternalUrl(), FILTER_VALIDATE_URL)) {

/*
* If editor linked to an external link

*/
$event->stopPropagation();
$event->setComplete(true);
$event->setContainsScheme(true); // Tells router not to prepend

→˓protocol and host to current URL
$event->setPath($nodeSource->getExternalUrl());

} elseif (count($nodeSource->getNodeReferenceSources()) > 0 &&
null !== $linkedSource = $nodeSource->

→˓getNodeReferenceSources()[0]) {
/*
* If editor linked to an internal page through a node reference

*/
/** @var FilterNodeSourcePathEvent $subEvent */
$subEvent = clone $event;
$subEvent->setNodeSource($linkedSource);
/*

3.1. Developer documentation 57

Roadiz Documentation, Release 1.4.0

* Dispatch a path generation again for linked node-source.

*/
$dispatcher->dispatch(NodesSourcesEvents::NODE_SOURCE_PATH_

→˓GENERATING, $subEvent);
/*
* Fill main event with sub-event data

*/
$event->setPath($subEvent->getPath());
$event->setComplete($subEvent->isComplete());
$event->setParameters($subEvent->getParameters());
$event->setContainsScheme($subEvent->containsScheme());
// Stop propagation AFTER sub-event was dispatched not to prevent

→˓it to perform.
$event->stopPropagation();

}
}

}
}

Then register your subscriber to the Roadiz event dispatcher in your theme setupDependencyInjection:

/** @var EventDispatcher $dispatcher */
$dispatcher = $container['dispatcher'];
$dispatcher->addSubscriber(new LinkPathGeneratingEventListener());

This method has an other great benefit: it allows your path logic to be cached inside node-source url’ cache
provider, instead of generating your custom URL inside your Twig templates or PHP controllers.

3.1.3 Tag system

Nodes are essentially hierarchical entities. So we created an entity to link nodes between them no matter
where/what they are. Tags are meant as tag nodes, we couldn’t be more explicit. But if you didn’t understand here
is a schema:

You can see that tags can gather heterogenous nodes coming from different types (pages and projects). Tags can
be used to display a category-navigation on your theme or to simply tidy your backoffice node database.

Did you notice that Tags are related to Nodes entities, not NodesSources? We thought that it would be easier
to manage that way not to forget to tag a specific node translation. It means that you won’t be able to differenciate
tag two NodesSources, if you absolutely need to, we encourage you to create two different nodes.

58 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Translate tags

You will notice that tags work the same way as nodes do. By default, tags names can’t contain special characters
in order to be used in URLs. So we created TagTranslation entities which stand for Tag’s sources:

In that way you will be able to translate your tags for each available languages and link documents to them.

Tag hierarchy

In the same way as Nodes work, tags can be nested to create tag groups.

Displaying node-source tags with Twig

Tag translations are already set up to track your current locale if you fetched them using |tags Twig filter. Simply
use getTranslatedTags()->first() Tag method to use them in your templates.

{% set tags = nodeSource|tags %}

{% for tag in tags %}

{% set tagTranslation = tag.translatedTags.first %}
<li id="{{ tag.tagName }}">{{ tagTranslation.name }}

{% endfor %}

Tags translations documents

Documents can be linked to your tag translations. They will be different for each translation, so make sure to
synchronize them manually if you want to use the same document for all translations.

They are available with getDocuments() method and will be ordered by position only.

Imagine, you want to link a PDF document for each of your tags, you can create a download link as described
below:

{% set tags = nodeSource|tags %}

{% for tag in tags %}

{% set tagTranslation = tag.translatedTags.first %}
<li id="{{ tag.tagName }}">

<p>{{ tagTranslation.name }}</p>
{% if tagTranslation.documents[0] %}

{
→˓% trans %}download_tag_pdf{% endtrans %}

{% endif %}

3.1. Developer documentation 59

Roadiz Documentation, Release 1.4.0

{% endfor %}

3.1.4 Attributes

Attributes are entities meant to qualify features on other entities, such as nodes. The main difference between tags
and attributes is that you can set a value for each attributed node.

The attribute “Color” can be set to “red” for one node and set to “green” for an other one.

Okay, but now what is the difference between attributes and node-type fields? Not so much because node-type
fields describe your node’ features too, but they are fixed and defined by the developer. Once your node-type fields
are created, you have to implement your feature in your Twig templates, and translate it in your XLF files too.

Attributes are meant to be created and added by editors so they can use them in your website lifecycle without
needing any further development.

From the developer perspective, attributes are just a collection of entities to be displayed in a loop. Then your
editor can create new ones and be sure they will be displayed without any additional development.

<ul class="block-attributes">
{% for attributeValueTranslation in nodeSource|attributes %}

{% if attributeValueTranslation.attribute.documents|length %}

{% for document in attributeValueTranslation.attribute.documents %}
<figure>{{ document|display }}</figure>

{% endfor %}
{% endif %}
{{ attributeValueTranslation|attribute_label(translation) }}:</

→˓strong>
{% if attributeValueTranslation is datetime %}

{{ attributeValueTranslation.value|localizeddate('medium', 'short
→˓') }}

{% elseif attributeValueTranslation is date %}
{{ attributeValueTranslation.value|localizeddate('medium') }}

{% elseif attributeValueTranslation is country %}
{{ attributeValueTranslation.value|country_iso(request.locale) }}

{% else %}
{{ attributeValueTranslation.value }}

{% endif%}

{% endfor %}

If you grouped your attributes, you can use grouped_attributes filter instead:

60 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

<ul class="block-attributes">
{% for item in nodeSource|grouped_attributes %}

{% if item.group %}

{{ item.group|attribute_group_label(translation) }}</
→˓strong>

{% endif %}

{% for attributeValueTranslation in item.attributeValues %}

{% if attributeValueTranslation.attribute.documents|length
→˓%}

{% for document in attributeValueTranslation.attribute.
→˓documents %}

<figure>{{ document|display }}</figure>
{% endfor %}

{% endif %}
{{ attributeValueTranslation|attribute_

→˓label(translation) }}:
{% if attributeValueTranslation is datetime %}

{{ attributeValueTranslation.value|localizeddate(
→˓'medium', 'short') }}

{% elseif attributeValueTranslation is date %}
{{ attributeValueTranslation.value|localizeddate(

→˓'medium') }}
{% elseif attributeValueTranslation is country %}

{{ attributeValueTranslation.value|country_iso(request.
→˓locale) }}

{% else %}
{{ attributeValueTranslation.value }}

{% endif%}

{% endfor %}

{% endfor %}

3.1. Developer documentation 61

Roadiz Documentation, Release 1.4.0

Attributes types

• String

• Date

• Date and time

• Single choice: choice among defined options in your attribute

• Boolean

• Integer

• Decimal

• Email

• Color

• Country: ISO 2-letters country code

Add attributes to nodes

Attribute section is available for any node in any translations.

62 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Twig extension

Several filters and tests are available to ease up templating with attributes:

Filters

• attributes: same as node_source_attributes() method, get all available attributes from a
NodesSources.

• grouped_attributes: same as node_source_grouped_attributes() method, get all avail-
able attributes from a NodesSources and gather them into their group.

• attribute_label(translation): get attribute translated label or code if not translated.

• attribute_group_label(translation): get attribute group translated name or
canonicalName if not translated.

Tests

• datetime

• date

• country

• boolean

• choice

• enum

3.1.5 Themes

3.1. Developer documentation 63

Roadiz Documentation, Release 1.4.0

Creating a theme

Roadiz themes are one of the main parts of the CMS. They allow you to create your really personal website. You
can duplicate an existing theme to customize stylesheets and images. Or you can start from ground and build your
very own theme using our API. Every visible part of Roadiz is a theme. Even backoffice interface is a theme, and
it’s called Rozier according to the street name where REZO ZERO created it.

Each theme is a folder which must be placed in themes/ folder. Roadiz Sources comes with 3 default themes :

• Install : It’s the first page theme you see when you launch Roadiz in your browser for the first time.

• Rozier : Here is the REZO ZERO designed backoffice for Roadiz, it’s available from rz-admin/ url and
protected by firewall.

• DefaultTheme : It’s a demo theme which is mainly used to demonstrate basic Roadiz features and to try the
back-office editing capabilities.

As these 3 themes come bundled with Roadiz, you can’t edit or update their files. Your changes would be overrode
the next time you update Roadiz via Git or direct download. If you want to create your own Backoffice, you can.
Just name it differently and hook it in backoffice or using CLI commands.

Source Edition

If you are using Roadiz Source edition, we configured Git versioning tool to ignore every additional theme you
create in /themes folder. So you can initialize your a new git repository per custom theme you create.
That way you can use code versioning independently from Roadiz updates.

Preparing your own frontend theme

To start from a fresh and clean foundation, we built a BaseTheme to fit our needs with many starter node-types
and a front-end framework using ES6 and Webpack.

Use Roadiz command to pull and rename BaseTheme after your own project
bin/roadiz themes:generate --relative --symlink MyAwesome

Your theme will be generated as /themes/MyAwesomeTheme with /themes/MyAwesomeTheme/
MyAwesomeThemeApp.php class.

Standard Edition

Roadiz Standard edition will create a symbolic link into web/ folder to publish your new theme public assets
as /web/themes/MyAwesomeTheme/static. Make sure that your system supports symbolic links.

Edit your main class informations (MyAwesomeThemeApp.php)

/*
* Copyright REZO ZERO 2016

*
* Description

*
* @file MyAwesomeThemeApp.php

* @copyright REZO ZERO 2014

* @author Ambroise Maupate

*/
namespace Themes\MyAwesomeTheme;

use RZ\Roadiz\CMS\Controllers\FrontendController;
use RZ\Roadiz\Core\Entities\Node;
use RZ\Roadiz\Core\Entities\Translation;

64 Chapter 3. Developer documentation

https://github.com/roadiz/BaseTheme

Roadiz Documentation, Release 1.4.0

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

/**
* MyAwesomeThemeApp class

*/
class MyAwesomeThemeApp extends FrontendController
{

protected static $themeName = 'My awesome theme';
protected static $themeAuthor = 'Ambroise Maupate';
protected static $themeCopyright = 'REZO ZERO';
protected static $themeDir = 'MyAwesomeTheme';
protected static $backendTheme = false;

//...
}

Then you will be able to add your fresh new theme into Roadiz backoffice or through Roadiz install.

Static routing

Before searching for a node’s Url (Dynamic routing), Roadiz will parse your theme route.yml to find static
controllers and actions to execute. Static actions just have to comply with the Request / Response scheme. It
is advised to add $_locale and $_route optional arguments to better handle multilingual pages.

foo:
path: /foo
defaults:

_controller: Themes\MyAwesomeTheme\Controllers\FooBarController::fooAction
bar:

path: /{_locale}/bar
defaults:

_controller: Themes\MyAwesomeTheme\Controllers\FooBarController::barAction
requirements:

Use every 2 letter codes
_locale: "[a-z]{2}"

public function fooAction(Request $request)
{

$translation = $this->bindLocaleFromRoute($request, 'en');
$this->prepareThemeAssignation(null, $translation);

return $this->render('foo.html.twig', $this->assignation);
}

public function barAction(
Request $request,
$_locale = null,
$_route = null

) {
$translation = $this->bindLocaleFromRoute($request, $_locale);
$this->prepareThemeAssignation(null, $translation);

return $this->render('bar.html.twig', $this->assignation);
}

Dynamic routing

3.1. Developer documentation 65

Roadiz Documentation, Release 1.4.0

Note: Every node-types will be handled by a specific Controller. If your created a “Page” type, Roadiz
will search for a ...\Controllers\PageController class and it will try to execute the indexAction
method.

An indexAction method must comply with the following signature. It will take the HttpFoundation’s Request as
first then a Node and a Translation instances. These two last arguments will be useful to generate your page
information and to render your current node.

/**
* Default action for any Page node.

*
* @param Symfony\Component\HttpFoundation\Request $request

* @param RZ\Roadiz\Core\Entities\Node $node

* @param RZ\Roadiz\Core\Entities\Translation $translation

*
* @return Symfony\Component\HttpFoundation\Response

*/
public function indexAction(

Request $request,
Node $node = null,
Translation $translation = null

) {
$this->prepareThemeAssignation($node, $translation);

return $this->render(
'types/page.html.twig', // Twig template path
$this->assignation // Assignation array to fill template placeholders

);
}

As Symfony controllers do, every Roadiz controllers actions have to return a valid Response object. This is the
render method purpose which will generate a standard html response using a Twig template and an assignation
array.

Note: It’s very easy to create JSON responses for your API with Roadiz. You just have to replace
$this->render($template, $assignation); method with $this->renderJson($data);.
This method is a shortcut for new JsonResponse($data);.

Home page case

Homepage is always a special page to handle. With Roadiz you have the choice to handle it as a static page or as
a dynamic page. In both case you’ll need to setup a static route in your theme Resources/routes.yml file.

homePage:
path: /
defaults:

_controller: Themes\MyAwesomeTheme\MyAwesomeThemeApp::homeAction
homePageLocale:

path: /{_locale}
defaults:

_controller: Themes\MyAwesomeTheme\MyAwesomeThemeApp::homeAction
requirements:

Use every 2 letter codes
_locale: "[a-z]{2}"

Now you can code your homeAction method in MyAwesomeThemeApp class. It will need 2 arguments:

• A Request object: $request

66 Chapter 3. Developer documentation

http://api.roadiz.io/RZ/Roadiz/CMS/Controllers/AppController.html#method_render

Roadiz Documentation, Release 1.4.0

• An optional locale string variable $_locale = null

Dynamic home

If your home page is built with a node. You can tell Roadiz to handle home request as a Page request (if
your home is a page type node) using $this->handle($request); method. This method will use the
PageController class and page.html.twig template to render your home. This can be useful when you
need to switch your home page to an other page, there is no need to make special ajustments.

/**
* {@inheritdoc}

*/
public function homeAction(

Request $request,
$_locale = null

) {
/*
* Get language from static route

*/
$translation = $this->bindLocaleFromRoute($request, $_locale);
$home = $this->getHome($translation);

/*
* Render Homepage according to its node-type controller

*/
return $this->handle($request, $home, $translation);

}

Static home

Imagine now that your home page has a totally different look than other pages. Instead of letting handle()
method returning your Response object, you can create it directly and use a dedicated home.html.twig tem-
plate. The fourth argument static::getThemeDir() is optional, it explicits the namespace to look into. It becames
useful when you mix several themes with the same templates names.

/**
* {@inheritdoc}

*/
public function homeAction(

Request $request,
$_locale = null

) {
/*
* Get language from static route

*/
$translation = $this->bindLocaleFromRoute($request, $_locale);
$home = $this->getHome($translation);

/*
* Render Homepage manually

*/
$this->prepareThemeAssignation($home, $translation);

return $this->render('home.html.twig', $this->assignation);
}

Keep in ming that prepareThemeAssignation method will assign for you some useful variables no matter
you choice a dynamic or a static home handling:

• node

3.1. Developer documentation 67

Roadiz Documentation, Release 1.4.0

• nodeSource

• translation

Using Twig

Note: Twig is the default rendering engine for Roadiz CMS. You’ll find its documentation at http://twig.
sensiolabs.org/doc/templates.html

When you use Dynamic routing within your theme, Roadiz will automatically assign some variables for you.

• cms_version — [string]

• cms_prefix — [string]

• help_external_url — [string] Back-office help URL (this can be overriden in your theme if your wrote a
dedicated documentation for your customers)

• is_debug - [boolean]

• is_preview - [boolean]

• is_dev_mode - [boolean]

• is_prod_mode - [boolean]

• head

– devMode — [boolean]

– universalAnalyticsId — [string]

– useCdn - [boolean]

– baseUrl — [string] Server base Url. Basically your domain name, port and folder if you didn’t
setup Roadiz at you server root

– filesUrl — [string]

• bags

– settings — [SettingsBag]

– nodeTypes — [NodeTypesBag]

– roles — [RolesBag]

• app

– session — [Session]

– user — [User]

– request — [object] Symfony request object which contains useful data such as current URI or
GET parameters

There are some more content only available from FrontendControllers.

• _default_locale — [string]

• meta

– siteName — [string]

– siteCopyright — [string]

– siteDescription — [string]

Then, in each dynamic routing actions you will need this line $this->storeNodeAndTranslation($node,
$translation); in order to make page content available from your Twig template.

68 Chapter 3. Developer documentation

http://twig.sensiolabs.org/doc/templates.html
http://twig.sensiolabs.org/doc/templates.html

Roadiz Documentation, Release 1.4.0

• node — [object]

• nodeSource — [object]

• translation — [object]

• pageMeta

– title — [string]

– description — [string]

– keywords — [string]

All these data will be available in your Twig template using {{ }} syntax. For example use {{ pageMeta.
title }} inside your head’s <title> tag. You can of course call objects members within Twig using the dot
separator.

<article>
<h1>{{ nodeSource.title }}</h1>
<div>{{ nodeSource.content|markdown }}</div>

{% set images = nodeSource.images %}

{% for image in images %}
{% set imageMetas = image.documentTranslations.first %}
<figure>

{{ image|display({'width':200 }) }}
<figcaption>{{ imageMetas.name }} -- {{ imageMetas.copyright }}</

→˓figcaption>
</figure>

{% endfor %}
</article>

Checking role permissions

You can use standard Twig is_granted method to check if current authenticated user can access resources
according to Roadiz ROLES.

{% if is_granted('ROLE_ACCESS_TAGS') %}
<div class="tags">

User can access tags
</div>
{% endif %}

Checking node-sources type

You can use every node-type names as simple Twig test against your nodeSource variables.

{% set parentNodeSource = nodeSource|parent %}

{% if parentNodeSource is Page %}
<p>I’m in a page</p>

{% endif %}
{% if parentNodeSource is BlogPost %}

<p>I’m in a blog article</p>
{% endif %}

You can use real node-type names, like Page, or their PHP classname, like NSPage.

3.1. Developer documentation 69

Roadiz Documentation, Release 1.4.0

Generating paths and url

Standard Twig path and urlmethods are both working for static and dynamic routing. In Roadiz, these methods
can take either a string identifier or a NodesSources instance. Of course optional parameters are available
for both, they will automatically create an http query string when using a node-source.

{# Path generation with a Symfony route #}
{# Eg. /fr #}
{{ path('homePageLocale', {_locale: 'fr'}) }}

{# Path generation with a node-source #}
{# Eg. /en/about-us #}
{{ path(nodeSource) }}

{# Url generation with a node-source #}
{# Eg. http://localhost:8080/en/about-us #}
{{ url(nodeSource) }}

{# Path generation with a node-source and parameters #}
{# Eg. /en/about-us?page=2 #}
{{ path(nodeSource, {'page': 2}) }}

Generating assets paths and url

You also can use standard {{ asset('file.jpg', 'FooBarTheme') }} to generate a path to a public
asset stored in your theme. This will generate /themes/FooBarTheme/static/file.jpg path, do not
add a leading slash to let Symfony package generate path according to request context.

If you need this path to converted to absolute url, use {{ absolute_url(asset('file.jpg',
'FooBarTheme')) }}.

asset method second argument is the package to use for resolving assets. Roadiz automatically registers a
package using your theme name.

Note: Make sure you are not using a leading slash in your asset paths. If you begin path with a slash, the assets
package won’t resolve it and it will assume that your path is already absolute.

Handling node-sources with Twig

Most of your front-end work will consist in editing Twig templating, Twig assignations and. . . Twig filters. Roadiz
core entities are already linked together so you don’t have to prepare your data before rendering it. Basically, you
can access nodes or node-sources data directly in Twig using the “dot” separator.

There is even some magic about Twig when accessing private or protected fields: just write the field-name and
it will use the getter method instead: {{ nodeSource.content|markdown }} will be interpreted as {{
nodeSource.getContent|markdown }} by Twig.

Note: Roadiz will transform your node-type fields names to camel-case to create getters and setters into you NS
class. So if you created a header_image field, getter will be named getHeaderImage(). However, if you
called it headerimage, getter will be getHeaderimage()

You can access methods too! You will certainly need to get node-sources’ documents to display them. Instead of
declaring each document in your PHP controller before, you can directly use them in Twig:

{% set images = nodeSource.images %}
{% for image in images %}

70 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

{% set imageMetas = image.documentTranslations.first %}
<figure>

{{ image|display({ 'width':200 }) }}
<figcaption>{{ imageMetas.name }} -- {{ imageMetas.copyright }}</

→˓figcaption>
</figure>

{% endfor %}

Use node references

If you added a node reference field to your node-source type you will able to grab them directly from the proxy
methods. For example, add a artist_references field which links some Artist nodes to your Page
node-type. Then you will be able to grab them using:

{% set artists = nodeSource.artistReferencesSources %}
{% for artist in artists %}

{{ artist.title }}
{% endfor %}

Note the Sources suffix after field getter name. It allows you to directly fetch NodesSources objects instead
of Node.

We encourage you to set only one Node-Type to your node-reference field to optimize Doctrine queries.

Loop over node-source children

With Roadiz you will be able to grab each node-source children using custom children Twig filter.

{% set childrenBlocks = nodeSource|children %}
{% for childBlock in childrenBlocks %}
<div class="block">

<h2>{{ childBlock.title }}</h2>
<div>{{ childBlock.content|markdown }}</div>

</div>
{% endfor %}

{#
This statement will only grab *visible* “Page” children node-sources and
will order them ascendently according to their *title*.
#}

{% set childrenBlocks = nodeSource|children({
'node.visible': true,
'node.nodeType': bags.nodeTypes.get('Page'),

},
{'title': 'ASC'}

) %}

Note: Calling getChildren() from a node-source handler or |children filter will always return
NodesSources objects from the same translation as their parent.

Add previous and next links

In this example, we want to create links to jump to next and previous pages. We will use node-source handler
methods getPrevious() and getNext()which work the same as getChildren()method. |previous
and |next Twig filters are also available.

3.1. Developer documentation 71

Roadiz Documentation, Release 1.4.0

{% set prev = nodeSource|previous %}
{% set next = nodeSource|next %}

{% if (prev or next) %}
<nav class="contextual-menu">

{% if prev %}
<i class="uk-icon-arrow-left"></i>

→˓{{ prev.title }}
{% endif %}
{% if next %}
{{ next.title }} <i class="uk-icon-

→˓arrow-right"></i>
{% endif %}

</nav>
{% endif %}

Note: Calling getPrevious and getNext from a node-source handler will always return NodesSources
objects from the same translation as their sibling.

Additional filters

Roadiz’s Twig environment implements some useful filters, such as:

• markdown: Convert a markdown text to HTML

• inlineMarkdown: Convert a markdown text to HTML without parsing block elements (useful for just
italics and bolds)

• markdownExtra: Convert a markdown-extra text to HTML (footnotes, simpler tables, abbreviations)

• centralTruncate(length, offset, ellipsis): Generate an ellipsis at the middle of your
text (useful for filenames). You can decenter the ellipsis position using offset parameter, and even change
your ellipsis character with ellipsis parameter.

• handler: Get an entity handler using Roadiz HandlerFactory.

NodesSources filters

These following Twig filters will only work with NodesSources entities. . . not Nodes. Use them with the
pipe syntax, eg. nodeSource|next.

• children: shortcut for NodesSourcesHandler::getChildren()

• next: shortcut for NodesSourcesHandler::getNext()

• previous: shortcut for NodesSourcesHandler::getPrevious()

• firstSibling: shortcut for NodesSourcesHandler::getFirstSibling()

• lastSibling: shortcut for NodesSourcesHandler::getLastSibling()

• parent: shortcut for $source->getParent()

• parents: shortcut for NodesSourcesHandler::getParents(array $options)

• tags: shortcut for NodesSourcesHandler::getTags()

• render(themeName): initiate a sub-request for rendering a given block NodesSources

72 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Documents filters

These following Twig filters will only work with Document entities. Use them with the pipe syntax, eg.
document|display.

• url: returns document public URL as string. See document URL options.

• display: generates an HTML tag to display your document. See document display options.

• imageRatio: return image size ratio as float.

• imageSize: returns image size as array with width and height.

• imageOrientation: get image orientation as string, returns landscape or portrait.

• path: shortcut for document real path on server.

• exists: shortcut to test if document file exists on server. Returns boolean.

• embedFinder: return the embed finder to handle external documents sources such as Youtube or Vimeo

Translations filters

These following Twig filters will only work with Translation entities. Use them with the pipe syntax, eg.
translation|menu.

• menu: shortcut for TranslationViewer::getTranslationMenuAssignation().

This filter returns some useful informations about current page available languages and their urls. See getTrans-
lationMenuAssignation method definition. You do not have to pass it the current request object as the filter will
grab it for you. But you can specify if you want absolute urls or not.

Standard filters and extensions are also available:

• {{ path('myRoute') }}: for generating static routes Url.

• truncate and wordwrap which are parts of the Text Extension .

Create your own Twig filters

Imagine now that your are rendering some dynamic CSS stylesheets with Twig. Your are listing your website
projects which all have a distinct color. So you’ve created a CSS route and a dynamic-colors.css.twig.

{% for project in projects %}
.{{ project.node.nodeName }} h1 {

color: {{ project.color }};
}
{% endfor %}

This code should output a CSS like that:

.my-super-project h1 {
color: #FF0000;

}
.my-second-project h1 {

color: #00FF00;
}

Then you should see your “super project” title in red on your website. OK, that’s great. But what should I do if I
need to use a RGBA color to control the Alpha channel value? For example, I want to set project color to a <div
class="date"> background like this:

3.1. Developer documentation 73

http://api.roadiz.io/RZ/Roadiz/Core/Viewers/TranslationViewer.html#method_getTranslationMenuAssignation
http://api.roadiz.io/RZ/Roadiz/Core/Viewers/TranslationViewer.html#method_getTranslationMenuAssignation
http://twig.sensiolabs.org/doc/extensions/text.html

Roadiz Documentation, Release 1.4.0

.my-super-project .date {
background-color: rgba(255, 0, 0, 0.5);

}
.my-second-project .date {

background-color: rgba(0, 255, 0, 0.5);
}

Great. . . I already see coming guys complaining that “rgba” is only supported since IE9. . . We don’t give a
shit!. . .

Hum, hum. So you need a super filter to extract decimal values from our backoffice stored hexadecimal color.
Roadiz enables us to extend Twig environment filters thanks to dependency injection!

You just have to extend setupDependencyInjection static method in your main theme class. Create it if it
does not exist yet.

// In your SuperThemeApp.php
public static function setupDependencyInjection(\Pimple\Container $container)
{

parent::setupDependencyInjection($container);

// We extend twig filters
$container->extend('twig.filters', function ($filters, $c) {

// The first filter will extract red value
$red = new \Twig_SimpleFilter('red', function ($hex) {

if ($hex[0] == '#' && strlen($hex) == 7) {
return hexdec(substr($hex, 1, 2));

} else {
return 0;

}
});
$filters->add($red);

// The second filter will extract green value
$green = new \Twig_SimpleFilter('green', function ($hex) {

if ($hex[0] == '#' && strlen($hex) == 7) {
return hexdec(substr($hex, 3, 2));

} else {
return 0;

}
});
$filters->add($green);

// The third filter will extract blue value
$blue = new \Twig_SimpleFilter('blue', function ($hex) {

if ($hex[0] == '#' && strlen($hex) == 7) {
return hexdec(substr($hex, 5, 2));

} else {
return 0;

}
});
$filters->add($blue);

// Then we return our extended filters collection
return $filters;

});
}

And. . . Voilà! You can use red, green and blue filters in your Twig template.

{% for project in projects %}
.{{ project.node.nodeName }} .date {

74 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

background-color: rgba({{ project.color|red }}, {{ project.color|green }}, {{
→˓project.color|blue }}, 0.5);
}
{% endfor %}

Use custom Twig extensions

Just like you did to add your own Twig filters, you can add your own Twig extensions. Instead of extending
twig.filters service, just extend twig.extensions service.

// In your SuperThemeApp.php
public static function setupDependencyInjection(\Pimple\Container $container)
{

parent::setupDependencyInjection($container);

// We extend twig extensions
$container->extend('twig.extensions', function ($extensions, $c) {

$extensions->add(new MySuperThemeTwigExtension());
return $extensions;

});
}

Creating a custom Twig extension is better if you want to add many new filters, methods and globals at
the same time.

Displaying documents

Did you noticed that images relation is available directly in nodeSource object? That’s a little shortcut to
(nodeSource|handler).documentFromFieldName('images'). Cool, isn’t it? When you create
your documents field in your node-type, Roadiz generate a shortcut method for each document relation in your
GeneratedNodesSources/NSxxxx class.

Now, you can use the DocumentViewer service to generate HTML view for your documents no matter they
are images, videos or embed. Two Twig filters are available with Documents:

• |display generates an HTML tag to display your document.

• |url generates a public URL to reach your document.

• |embedFinder gets the EmbedFinder for current document according to the embed-platform type
(Youtube, Vimeo, Soundcloud. . .).

{# Grab only first document from “images” field #}
{% set image = nodeSource.images[0] %}

{# Always test if document exists #}
{% if image %}
{{ image|display({

'width':200,
'height':200,
'crop':"1:1",
'quality':75,
'embed':true

}) }}
{% endif %}

3.1. Developer documentation 75

Roadiz Documentation, Release 1.4.0

HTML output options

• absolute (true|false), generates an absolute URL with protocol, domain-name and base-url. This must be
used for social network images.

• embed (true|false), display an embed as iframe instead of its thumbnail

• identifier

• class

• alt: If not filled, it will get the document name, then the document filename

• lazyload (true|false), fill image src in a data-src attribute instead of src to prevent it from loading. It
will add automatically lazyload_class class to your HTML image.

• lazyload_class (default: lazyload) Class name to be added when enabling lazyloading.

• fallback (URL|data-uri) Defines a custom fallback image URL or data-uri when using lazyload option
in order to fill src attribute and validate against W3C

• blurredFallback (false|true, default: false) Generated a very low quality image version for lazyload
fallback to better control image size and better experience.

• picture (false|true), use <picture> element instead of image and allow serving WebP image to compati-
bles browsers. Only use if your server support WebP.

• inline (true|false), for SVG, display SVG inline code in html instead of using an <object> tag. Default
true.

• loading (auto|lazy|eager), for next-gen browser only that will support native lazy-loading. This will be
applied only on img, picture and iframe elements. This can fail W3C validation.

Images resampling options

• width

• height

• crop (ratio: {w}:{h}, for example : 16:9)

• fit (fixed dimensions: {w}x{h}, for example : 100x200), if you are using fit option, Roadiz will be able
to add width and height attributes to your tag.

• align, to use along with fit parameter to choose which part of the picture to fit. Allowed options:

– top-left

– top

– top-right

– left

– center

– right

– bottom-left

– bottom

– bottom-right

• grayscale (boolean)

• quality (1-100)

• flip (h or v), mirror your image vertical or horizontal

• blur (1-100) (can be really slow to process)

76 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

• sharpen (1-100)

• contrast (1-100)

• background (hexadecimal color without #)

• progressive (boolean), it will interlace the image if it’s a PNG file.

• noProcess (boolean): Disable image processing

Audio / Video options

• autoplay (boolean)

• controls (boolean)

• loop (boolean)

• muted (boolean)

• custom_poster (string): URL to a image to be used as video poster

For Soundcloud embeds

• hide_related (boolean)

• show_comments (boolean)

• show_user (boolean)

• show_reposts (boolean)

• visual (boolean)

For Mixcloud embeds

• mini (boolean) defaults to false

• light (boolean) defaults to true

• hide_cover (boolean) defaults to true

• hide_artwork (boolean) defaults to false

For Vimeo embeds

• displayTitle (boolean)

• byline (boolean)

• portrait (boolean)

• color (boolean)

• api (boolean)

• automute (boolean)

• autopause (boolean)

For Youtube embeds

• modestbranding (boolean)

• rel (boolean)

• showinfo (boolean)

• start (integer)

• end (integer)

• enablejsapi (boolean)

• playlist (boolean)

3.1. Developer documentation 77

https://developers.google.com/youtube/player_parameters

Roadiz Documentation, Release 1.4.0

You can use multiple source files for one video document or audio document. Just upload a file using tge
same filename name but with a different extension. Use this method to add a poster image to your video too.
For example: for my-video.mp4 file, upload my-video.webm, my-video.ogg and my-video.jpeg
documents. Roadiz will automatically generate a <video> tag using all these files as source and poster attribute.

Using src-set attribute for responsive images

Roadiz can generate a srcset attribute to create a responsive image tag like the one you can find on these
examples.

• srcset (Array) Define for each rule an Array of format. Specifications

• media (Array) Define one srcset for each media-query. You cannot use media without picture
option.

{% set image = nodeSource.images[0] %}
{% if image %}
{{ image|display({

'fit':'600x600',
'quality':75,
'srcset': [

{
'format': {

'fit':'200x200',
'quality':90

},
'rule': '780w',

},
{

'format': {
'fit':'600x600',
'quality':75

},
'rule': '1200w',

}
],
'sizes': [

'(max-width: 780px) 200px',
'(max-width: 1200px) 600px',

],
}) }}
{% endif %}

This will output an img tag like the following one:

<img src="/assets/f600x600-q75/image.jpg"
srcset="/assets/f600x600-q75/image.jpg 1200w, /assets/f200x200-q90/image.jpg

→˓780w"
sizes="(max-width: 780px) 200px, (max-width: 1200px) 600px"
alt="A responsive image">

Generate <picture> elements

If you want to combine srcset for media queries and device ratio, use picture element with media option:

{% set image = nodeSource.images[0] %}
{% if image %}
{{ image|display({

'fit':'640x400',
'quality':75,

78 Chapter 3. Developer documentation

https://responsiveimages.org/
https://responsiveimages.org/
https://www.w3.org/html/wg/drafts/html/master/semantics.html#attr-img-srcset

Roadiz Documentation, Release 1.4.0

'picture': true,
'media': [

{
'srcset': [

{
'format': {

'fit':'320x200',
'quality':90

},
'rule': '1x',

},
{

'format': {
'fit':'640x400',
'quality':75

},
'rule': '2x',

}
],
'rule': '(max-width: 767px)'

},
{

'srcset': [
{

'format': {
'fit':'800x600',
'quality':80

},
'rule': '1x',

},
{

'format': {
'fit':'1600x1200',
'quality':70

},
'rule': '2x',

}
],
'rule': '(min-width: 768px)'

}
]

}) }}
{% endif %}

This will output a picture element supporting :

• WebP image format (Roadiz will automatically generate a .webp image if your PHP is compiled with webp
support)

• Media query attributes

• Device ratio src-set rules

• A fallback img element for older browsers

<picture>
<source media="(max-width: 767px)"

srcset="/assets/f320x200-q90/folder/file.jpg.webp 1x, /assets/f640x400-
→˓q75/folder/file.jpg.webp 2x"

type="image/webp">
<source media="(max-width: 767px)"

srcset="/assets/f320x200-q90/folder/file.jpg 1x, /assets/f640x400-q75/
→˓folder/file.jpg 2x"

type="image/jpeg">

3.1. Developer documentation 79

Roadiz Documentation, Release 1.4.0

<source media="(min-width: 768px)"
srcset="/assets/f800x600-q80/folder/file.jpg.webp 1x, /assets/

→˓f1600x1200-q70/folder/file.jpg.webp 2x"
type="image/webp">

<source media="(min-width: 768px)"
srcset="/assets/f800x600-q80/folder/file.jpg 1x, /assets/f1600x1200-

→˓q70/folder/file.jpg 2x"
type="image/jpeg">

<img alt="file.jpg"
src="/assets/f640x400-q75/folder/file.jpg"
width="640" height="400" />

</picture>

More document details

You can find more details in our API documentation.

• If document is an image: getDocumentByArray method will generate an tag with a src
and alt attributes.

• If it’s a video, it will generate a <video /> tag with as many sources as available in your document
database. Roadiz will look for same filename with each HTML5 video extensions (filename.mp4, file-
name.ogv, filename.webm).

• Then if document is an external media and if you set the embed flag to true, it will generate an iframe
according to its platform implementation (Youtube, Vimeo, Soundcloud).

• Get the external document URI (the one used for creating iframe for example) with
(document|embedFinder).source twig command.

Manage global documents

You can store documents inside settings for global images such as header images or website logo. Simply create
a new setting in Roadiz back-office choosing Document type, then a file selector will appear in settings list to
upload your picture.

To use this document setting in your theme, you can assign it globally in your
MyThemeApp::extendAssignation method. Use getDocument method instead of get to fetch
a Document object that you’ll be able to display in your Twig templates:

$document = $this->get('settingsBag')->getDocument('site_logo');

Or in a Twig template:

<figure id="site-logo">{{ bags.settings.getDocument('site_logo')|display }}</
→˓figure>

This way is the easiest to fetch a global document, but it needs you to upload it once in Settings section. If this
does not suit you, you can always fetch a Document manually using its Doctrine repository and a hard-coded
filename.

$this->assignation['head']['site_logo'] = $this->get('em')->
→˓getRepository(Document::class)->findOneByFilename('logo.svg');

80 Chapter 3. Developer documentation

http://api.roadiz.io/RZ/Roadiz/Core/Viewers/DocumentViewer.html#method_getDocumentByArray

Roadiz Documentation, Release 1.4.0

Extending your Twig assignation

For a simple website theme, base assignation will work for almost every cases. Using node or nodeSource
data from your Twig template, you will be able to render all your page fields.

Now imagine you need to load data from another node than the one being requested. Or imagine that you want
to create a complex homepage which displays a summary of your latest news. You will need to extend existing
assignated variables.

For example, create a simple node-type called Page. Add several basic fields inside it such as content and images.
If you well-understood how to create a theme section you will create a PageController.php which look like this:

<?php
namespace Themes\MyTheme\Controllers;

use Themes\MyTheme\MyThemeApp;
use RZ\Roadiz\Core\Entities\Node;
use RZ\Roadiz\Core\Entities\Translation;
use Symfony\Component\HttpFoundation\Request;

/**
* Frontend controller to handle Page node-type request.

*/
class PageController extends MyThemeApp
{

/**
* Default action for any Page node.

*
* @param Symfony\Component\HttpFoundation\Request $request

* @param RZ\Roadiz\Core\Entities\Node $node

* @param RZ\Roadiz\Core\Entities\Translation $translation

*
* @return Symfony\Component\HttpFoundation\Response

*/
public function indexAction(

Request $request,
Node $node = null,
Translation $translation = null

) {
$this->prepareThemeAssignation($node, $translation);

return $this->render('types/page.html.twig', $this->assignation);
}

}

You will be able to render your page using themes/MyTheme/Resources/views/types/page.html.
twig template file:

{% extends '@MyTheme/base.html.twig' %}

{% block content %}

<h1>{{ nodeSource.title }}</h1>
<div class="content">{{ nodeSource.content|markdown }}</div>
<div class="images">

{% for image in nodeSource.images %}
<figure>

{{ image|display }}
</figure>

{% endfor %}
</div>
{% endblock %}

3.1. Developer documentation 81

Roadiz Documentation, Release 1.4.0

Use theme-wide assignation

Custom assignations are great but what can I do if I have to use the same variables in several controllers? We
added a special extendAssignation method which is called at the end of your theme preparation pro-
cess (prepareThemeAssignation and prepareNodeSourceAssignation). Just override it in your
MyThemeApp main class, then every theme controllers and templates will be able to use these variables.

For example, you can use this method to make <head> variables available for each of your website pages.

/**
* {@inheritdoc}

*/
protected function extendAssignation()
{

parent::extendAssignation();

$this->assignation['head']['facebookUrl'] = $this->get('settingsBag')->get(
→˓'facebook_url');

$this->assignation['head']['facebookClientId'] = $this->get('settingsBag')->
→˓get('facebook_client_id');

$this->assignation['head']['instagramUrl'] = $this->get('settingsBag')->get(
→˓'instagram_url');

$this->assignation['head']['twitterUrl'] = $this->get('settingsBag')->get(
→˓'twitter_url');

$this->assignation['head']['googleplusUrl'] = $this->get('settingsBag')->get(
→˓'googleplus_url');

$this->assignation['head']['googleClientId'] = $this->get('settingsBag')->get(
→˓'google_client_id');

$this->assignation['head']['maps_style'] = $this->get('settingsBag')->get(
→˓'maps_style');

$this->assignation['head']['themeName'] = static::$themeName;
$this->assignation['head']['themeVersion'] = static::VERSION;

}

Use Page / Block data pattern

At REZO ZERO, we often use complex page design which need removable and movable parts. At first we used
to create long node-types with a lot of fields, and when editors needed to move content to an other position, they
had to cut and paste text to another field. It was long and not very sexy.

So we thought about a modulable way to build pages. We decided to use one master node-type and several slave
node-types instead of a single big type. Here is what we call Page/Block pattern.

This pattern takes advantage of Roadiz node hierarchy. We create a very light Page node-type, with an excerpt
and a thumbnail fields, then we create an other node-type that we will call BasicBlock. This block node-type will
have a content and image fields.

The magic comes when we add a last field into Page master node-type called children_nodes. This special field
will display a node-tree inside your edit page. In this field parameter, we add BasicBlock name as a default value
to tell Roadiz that each Page nodes will be able to contain BasicBlock nodes.

So you understood that all your page data will be allocated in several BasicBlock nodes. Then your editor will just
have to change block order to re-arrange your page content. That’s not all! With this pattern you can join images
to each block so that each paragraph can be pictured with a Document field. No need to insert image tags right
into your Markdown text as you would do in a Wordpress article.

How to template Page / Block pattern

Now that you’ve structured your data with a Page node-type and a BasicBlock, how do render your data in only
one page and only one URL request? We will use custom assignations!

82 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

You can directly assign your children blocks at the beginning of your Twig template. Make sure the global bags
service is available and reachable.

{% set blocks = nodeSource|children({
node.nodeType : bags.nodeTypes.get('BasicBlock'),

}) %}

Note: You can use different block types in the same page. Just create as many node-types as you
need and add their name to your Page children_node default values. Then add each node-type into
children criteria using an array instead of a single value: node.nodeType : [bags.nodeTypes.
get('BasicBlock'), bags.nodeTypes.get('AnotherBlock')]. That way, you will be able to
create awesome pages with different looks but with the same template (basic blocks, gallery blocks, etc).

Now we can update your types/page.html.twig template to use your assignated blocks.

{% if blocks %}
<section class="page-blocks">
{% for pageBlock in blocks %}

{% include '@MyTheme/blocks/' ~ pageBlock.node.nodeType.name|lower ~ '.html.
→˓twig' with {

'nodeSource': pageBlock,
'parentNodeSource': nodeSource,
'themeServices': themeServices,
'bags': bags,
'head': head,
'node': pageBlock.node,
'nodeType': pageBlock.node.nodeType,
'loop': loop,
'blocksLength':blocks|length

} only %}
{% endfor %}
</section>
{% endif %}

Whaaat? What is that include? This trick will save you a lot of time! We ask Twig to include a sub-template
according to each block type name. Eg. for a BasicBlock node, Twig will include a blocks/basicblock.
html.twig file. It’s even more powerful when you are using multiple block types because Twig will automati-
cally choose the right template to render each part of your page.

Then create each of your blocks templates files in blocks folder:

{# This is file: blocks/basicblock.html.twig #}

<div class="basicblock {% if loop.index0 is even %}even{% else %}odd{% endif %}">
{#
Did you notice that 'pageBlock' became 'nodeSource' as
we passed it during include for a better compatibility
#}

<h3>{{ nodeSource.title }}</h3>
<div class="content">{{ nodeSource.content|markdown }}</div>

<div class="images">
{% for image in nodeSource.images %}

<figure>
{{ image|display({'width':200}) }}

</figure>
{% endfor %}
</div>

</div>

Voilà! This is the simplest example to demonstrate you the power of Page / Block pattern. If you managed to

3.1. Developer documentation 83

Roadiz Documentation, Release 1.4.0

reproduce this example you can now try it using multiple block node-types, combining multiple sub-templates.

Use block rendering

A few times, using Page / Block pattern won’t be enough to display your page blocks. For example, you will
occasionally need to create a form inside a block, or you will need to process some data before using them in your
Twig template.

For this we added a render filter which basically create a sub-request to render your block. This new request
make possible to create a dedicated Controller for your block.

Let’s take the previous example about a page with several basic blocks inside. Imagine you have a new contact
block to insert in your page, then how would you create your form? The following code shows how to “embed” a
sub-request inside your block template.

{#
This is file: blocks/contactblock.html.twig
#}

<div class="contactblock {% if loop.index0 is even %}even{% else %}odd{% endif %}">

<h3>{{ nodeSource.title }}</h3>
<div class="content">{{ nodeSource.content|markdown }}</div>

{#
We created a display_form node-type field to enable/disable form
but this is optional
#}

{% if nodeSource.displayForm %}
{#
“render” twig filter initiate a new Roadiz request
using *nodeSource* as primary content. It takes one
argument to locate your block controller
#}
{{ nodeSource|render('MyTheme') }}

{% endif %}
</div>

Then Roadiz will look for a Themes\MyTheme\Controllers\Blocks\ContactBlockController.
php file and a blockAction method inside.

namespace Themes\MyTheme\Controllers\Blocks;

use RZ\Roadiz\Core\Entities\NodesSources;
use RZ\Roadiz\Core\Exceptions\ForceResponseException;
use Symfony\Component\HttpFoundation\Request;
use Themes\MyTheme\MyThemeApp;

class ContactBlockController extends MyThemeApp
{

function blockAction(Request $request, NodesSources $source, $assignation)
{

$this->prepareNodeSourceAssignation($source, $source->getTranslation());

$this->assignation = array_merge($this->assignation, $assignation);

// If you assignate session messages here, do not assignate it in your
// MyThemeApp::extendAssignation() method before.
$this->assignation['session']['messages'] = $this->get('session')->

→˓getFlashBag()->all();

/*
* Add your form code here, for example

84 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

*/
$form = $this->createFormBuilder()->add('name', 'text')

->add('send_name', 'submit')
->getForm();

$form->handleRequest($request);
if ($form->isValid()) {

// some stuff
throw new ForceResponseException($this->redirect($request->getUri()));

}

$this->assignation['contactForm'] = $form->createView();

return $this->render('form-blocks/contactblock.html.twig', $this->
→˓assignation);

}
}

Then create your template form-blocks/contactblock.html.twig:

<div class="contact-form">
{% for messages in session.messages %}

{% for message in messages %}
<p class="alert alert-success">{{ message }}</p>

{% endfor %}
{% endfor %}

{{ form(contactForm) }}
</div>

Use controller rendering

Roadiz implements the standard Symfony fragment rendering too. Use render() Twig function with
controller() function to initiate a Roadiz sub-request and embed complex contents into your templates.

{# views/base.html.twig #}

{# ... #}
<div id="sidebar">

{{ render(controller(
'Themes\\MyTheme\\Controllers\\ArticleController::recentArticlesAction',
{ 'max': 3 }

)) }}
</div>

Then use regular Roadiz controllers and actions to handle your sub-request:

// themes/MyTheme/Controllers/ArticleController.php
namespace Themes\MyTheme\Controllers;

// ...

class ArticleController extends MyThemeApp
{

public function recentArticlesAction(Request $request, $max = 3, $_locale = 'en
→˓')

{
$translation = $this->bindLocaleFromRoute($request, $_locale);
$this->prepareThemeAssignation(null, $translation);

// make a database call or other logic
// to get the "$max" most recent articles

3.1. Developer documentation 85

Roadiz Documentation, Release 1.4.0

$articles = ...;

return $this->render(
'article/recent_list.html.twig',
['articles' => $articles]

);
}

}

See https://symfony.com/doc/current/templating/embedding_controllers.html for more details about Symfony ren-
der extension.

Paginate entities using EntityListManager

Roadiz implements a powerful tool to display lists and paginate them. Each Controller class allows developer
to use createEntityListManager method.

In FrontendController inheriting classes, such as your theme ones, this method is overriden to automati-
cally use the current authorizationChecker to filter entities by status when entities are nodes.

createEntityListManager method takes 3 arguments:

• Entity classname, i.e. RZ\Roadiz\Core\Entities\Nodes or
GeneratedNodeSources\NSArticle. The great thing is that you can use it on a precise
NodesSources class instead of using Nodes or NodesSources then filtering on node-type. Using a NS
entity allows you to filter on your own custom fields too.

• Criteria array, (optional)

• Ordering array, (optional)

EntityListManager will automatically grab the current page looking for your Request parameters. If ?page=2 is
set or ?search=foo, it will use them to filter your list and choose the right page.

If you want to handle pagination manually, you always can set it with setPage(page) method, which must be
called after handling EntityListManager. It is useful to bind page parameter in your routing configuration.

projectPage:
path: /articles/{page}
defaults:

_controller:
→˓Themes\MyAwesomeTheme\Controllers\ArticleController::listAction

page: 1
requirements:

page: "[0-9]+"

Then, build your listAction method.

public function listAction(
Request $request,
$page,
$_locale = 'en'

) {
$translation = $this->bindLocaleFromRoute($request, $_locale);
$this->prepareThemeAssignation(null, $translation);

$listManager = $this->createEntityListManager(
NSArticle::class,
['sticky' => false], //sticky is a custom field from Article node-type
['node.createdAt' => 'DESC']

);
/*
* First, set item per page

86 Chapter 3. Developer documentation

https://symfony.com/doc/current/templating/embedding_controllers.html

Roadiz Documentation, Release 1.4.0

*/
$listManager->setItemPerPage(20);
/*
* Second, handle the manager

*/
$listManager->handle();
/*
* Third, set current page manually

* AFTER handling entityListManager

*/
if ($page > 1) {

$listManager->setPage($page);
}

$this->assignation['articles'] = $listManager->getEntities();
$this->assignation['filters'] = $listManager->getAssignation();

return $this->render('types/articles-feed.html.twig', $this->assignation);
}

Then create your articles-feed.html.twig template to display each entity paginated.

{# Listing #}
<ul class="article-list">

{% for article in articles %}
<li class="article-item">

<h2>{{ article.title }}</h2>

{% endfor %}

{# Pagination #}
{% if filters.pageCount > 1 %}

<nav class="pagination">
{% if filters.currentPage > 1 %}

<a class="prev-link" href="{{ path('projectPage', {page: filters.
→˓currentPage - 1}) }}">

{% trans %}prev.page{% endtrans %}

{% endif %}
{% if filters.currentPage < filters.pageCount %}

<a class="next-link" href="{{ path('projectPage', {page: filters.
→˓currentPage + 1}) }}">

{% trans %}next.page{% endtrans %}

{% endif %}
</nav>

{% endif %}

Alter your Roadiz queries with events

The FilterQueryBuilderEvent can be used when EntityListManager criteria or API services won’t offer
enough parameters to select your entities. This event will be dispatched when just before Doctrine QueryBuilder
will execute the DQL query so that you can add more DQL statements. This can be very powerful if you need, for
example, to force an INNER JOIN or to use complexe DQL commands.

// Prepare a Closure listener to filter every NodesSources
// which are not called "About"

3.1. Developer documentation 87

Roadiz Documentation, Release 1.4.0

$callable = function(FilterQueryBuilderEvent $event) {
// Specify the repository on which your filter will be applied
// Try to be the more precise you can

// This will be applied to all nodes-sources (greedy)
if ($event->supports(NodesSources::class)) {

$qb = $event->getQueryBuilder();
$qb->andWhere($qb->expr()->neq($qb->expr()->lower('ns.title'), ':neq'));
$qb->setParameter('neq', 'about');

}
// This will be applied only on your Page nodes-sources (safer)
if ($event->supports(NSPage::class)) {

$qb = $event->getQueryBuilder();
$qb->andWhere($qb->expr()->neq($qb->expr()->lower('ns.title'), ':neq'));
$qb->setParameter('neq', 'about');

}
};

// Register your listener in Roadiz event dispatcher
/** @var EventDispatcher $eventDispatcher */
$eventDispatcher = $this->get('dispatcher');
$eventDispatcher->addListener(

QueryBuilderEvents::QUERY_BUILDER_SELECT,
$callable

);

// Do some queries or use Roadiz EntityListManager

// Do not forget to remove your listener not to alter EVERY
// queries on NodesSources in your following code.
$eventDispatcher->removeListener(

QueryBuilderEvents::QUERY_BUILDER_SELECT,
$callable

);

Warning: QueryBuilder events are a powerful tool to alter all Roadiz entities pipeline. Make sure to
remove your listener from the dispatcher before rendering your Twig templates or to only support the
entityClass you need. This could alter every queries such as |children Twig filters or your main
navigation loop.

Add a firewall in your theme

You may need to add a secured area in your website or application, even for none-backend users. Roadiz uses
Symfony security components to handle firewalled requests. You will be able to extend the firewall map in your
Theme addDefaultFirewallEntry method.

Before create your firewall map entry, you must understand that Roadiz already has 2 firewall areas:

• ^/rz-admin area, which naturally matches every back-office sections

• ^/ area which is required for previewing unpublished node and get user informations across the whole
website

The last firewall request matcher can be tricky to deal with, especially if you want to add another se-
cured area as it listen to every requests. When you’ll add new firewall map entry, you may call
parent::addDefaultFirewallEntry($container); before your custom configuration to be sure
that ^/ request matcher has the lowest priority. However, if you want to override ^/ request matcher configura-
tion you have to omit the parent method call.

88 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

/**
* {@inheritdoc}

*/
public static function addDefaultFirewallEntry(Container $container)
{

/*
* Your custom firewall map entry configuration

* goes here

*/

/*
* Call parent ONLY if you don’t want to create

* a firewall map at website root level. And call it after

* your own firewall entry.

*/
parent::addDefaultFirewallEntry($container);

}

Configuring a non-root firewall map entry with FirewallEntry class

Before copy and pasting the following lines, think about it a little time. . . A firewall map entry defines severals
mandatory routes:

• A base path for your firewall to be triggered

• A login path, which can be outside or inside of your firewall map

• A login_check path, which must be inside of your firewall map

• A logout path, which must be inside of your firewall map

• A new role describing your secured area purpose (i.e. ROLE_ACCESS_PRESS for a private press kit area),
you should create this role in Roadiz backoffice before.

If this example I will use:

• /press as my base path for secured area

• /signin for my login page, notice that it’s not in my firewall

• /press/login_check

• /press/logout

• ROLE_ACCESS_PRESS

Here is the code to add in your theme’ addDefaultFirewallEntry method. Do not forget to add the matching use
statement in your file header.

use RZ\Roadiz\Utils\Security\FirewallEntry;
use Pimple\Container;

/**
* {@inheritdoc}

*/
public static function addDefaultFirewallEntry(Container $container)
{

/*
* Call parent ONLY if you don’t want to create

* a firewall map at website root level.

*/
parent::addDefaultFirewallEntry($container);

$firewallBasePattern = '^/press';
$firewallBasePath = '/press';

3.1. Developer documentation 89

Roadiz Documentation, Release 1.4.0

$firewallLogin = '/signin';
$firewallLogout = '/press/logout';
$firewallLoginCheck = '/press/login_check';
$firewallBaseRole = 'ROLE_ACCESS_PRESS';

$firewallEntry = new FirewallEntry(
$container,
$firewallBasePattern,
$firewallBasePath,
$firewallLogin,
$firewallLogout,
$firewallLoginCheck,
$firewallBaseRole
// You can add a special AuthenticationSuccessHandler
// if you need to do some stuff for your theme at visitor login
//'Themes\YourTheme\Authentification\AuthenticationSuccessHandler'

);
// Allow anonymous authentication
$firewallEntry->withAnonymousAuthenticationListener();
// Allow switch user feature
$firewallEntry->withSwitchUserListener();

/*
* Finally add this entry to the Roadiz

* firewall map.

*/
$container['firewallMap']->add(

$firewallEntry->getRequestMatcher(),
$firewallEntry->getListeners(),
$firewallEntry->getExceptionListener()

);
}

Add login routes

After configuring your Firewall, you’ll need to add your routes to your theme routes.yml file. Logout and
login_check won’t need any controller setup as they will be handled directly by Roadiz firewall event dispatcher.
The only one you need to handle is the login page.

themeLogout:
path: /press/logout

themeLoginCheck:
path: /press/login_check

themeLoginPage:
path: /signin
defaults:

_controller: Themes\MySuperTheme\Controllers\LoginController::loginAction

Warning: If your login route is inside your firewall and your access map require an other role than
IS_AUTHENTICATED_ANONYMOUSLY you must add a special access map entry to enable your public visi-
tor to access your login page.

$this->container['accessMap']->add(new RequestMatcher('^/press/signin'),
['IS_AUTHENTICATED_ANONYMOUSLY']);

Add this line with your login page pattern before adding your firewall entry. Access map entries order is
important!

In your LoginController, just add error handling from the securityAuthenticationUtils service

90 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

to display a feedback on your login form:

/**
* {@inheritdoc}

*/
public function loginAction(

Request $request,
$_locale = 'en'

) {
$translation = $this->bindLocaleFromRoute($request, $_locale);
$this->prepareThemeAssignation(null, $translation);
$helper = $this->get('securityAuthenticationUtils');
$this->assignation['last_username'] = $helper->getLastUsername();
$this->assignation['error'] = $helper->getLastAuthenticationError();

return $this->render('press/login.html.twig', $this->assignation);
}

Then, you can create your login form as you want. Just use the required fields:

• _username

• _password

And do not forget to set your form action to {{ path('themeLoginCheck') }} and to use POST method.

{% if error %}
<div class="alert alert-danger"><i class="fa fa-warning"></i> {{ error.

→˓message|trans }}</div>
{% endif %}
<form id="login-form" class="form" action="{{ path('themeLoginCheck') }}" method=
→˓"post">

<div class="form-group">
<label class="control-label" for="_username">{% trans %}username{%

→˓endtrans %}</label>
<input class="form-control" type="text" name="_username" id="_username"

→˓placeholder="{% trans %}username{% endtrans %}" value="" />
</div>
<div class="form-group">

<label class="control-label" for="_password">{% trans %}password{%
→˓endtrans %}</label>

<input class="form-control" type="password" name="_password" id="_password
→˓" placeholder="{% trans %}password{% endtrans %}" value="" />

</div>
<div class="form-group">

<label class="control-label" for="_remember_me">{% trans %}keep_me_logged_
→˓in{% endtrans %}</label>

<input class="form-control" type="checkbox" name="_remember_me" id="_
→˓remember_me" value="1" />

</div>
<div class="form-group">

<button class="btn btn-primary" type="submit"><i class="fa fa-signin"></i>
→˓{% trans %}login{% endtrans %}</button>

</div>
</form>

Configuring a root firewall map entry with FirewallEntry class

You may want to offer authentication for every pages of your website and manage access control manually within
your node-type controllers. In that case you need to override default front-end Firewall map entry with your own
and defined login/logout paths.

3.1. Developer documentation 91

Roadiz Documentation, Release 1.4.0

use RZ\Roadiz\Utils\Security\FirewallEntry;
use Pimple\Container;

/**
* {@inheritdoc}

*/
public static function addDefaultFirewallEntry(Container $container)
{

/*
* Do not call parent method

*/

$firewallBasePattern = '^/';
$firewallBasePath = '/';
$firewallLogin = '/accounts';
$firewallLogout = '/accounts/logout';
$firewallLoginCheck = '/accounts/login_check';

/*
* You MUST use IS_AUTHENTICATED_ANONYMOUSLY base role not to prevent

* users to access your website

*/
$firewallBaseRole = 'IS_AUTHENTICATED_ANONYMOUSLY';

$firewallEntry = new FirewallEntry(
$container,
$firewallBasePattern,
$firewallBasePath,
$firewallLogin,
$firewallLogout,
$firewallLoginCheck,
$firewallBaseRole

);
// Allow anonymous authentication
$firewallEntry->withAnonymousAuthenticationListener()

->withSwitchUserListener()
// Automatically redirect to themeLoginPage route
// if AccessDeniedException is thrown
->withAccessDeniedHandler('themeLoginPage')
->withReferer();

/*
* Finally add this entry to the Roadiz

* firewall map.

*/
$container['firewallMap']->add(

$firewallEntry->getRequestMatcher(),
$firewallEntry->getListeners(),
$firewallEntry->getExceptionListener()

);
}

For the moment, every pages of your website will be public. You’ll need to use is_granted Twig filter and
$this->denyAccessUnlessGranted($role) method to manage access control to your contents.

Multi-theme website

If your website has more than one theme you must disable firewall entries on every non-main theme app class not
to register duplicated firewall entries with the same access-map rules.

For example, if you registered a MainTheme and a SecondaryTheme, add the following lines to your

92 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

themes/SecondaryTheme/SecondaryThemeApp.php class:

/**
* {@inheritdoc}

*/
public static function addDefaultFirewallEntry(Container $container)
{

/*
* Do not register any firewall entry

*/
}

Sending emails from your website

emailManager factory service is available to send emails from your application. It’s already configured to use
simple CSS styles and you can use an HTML and plain-text templates.

$request = $this->get('request');
$receiver = 'dest@test.com';
$origin = $this->get('settingsBag')->get('email_sender');

$emailManager = $this->get('emailManager');
$title = $this->getTranslator()->trans('hello_world');
$emailManager->setEmailTitle($title);
$emailManager->setSubject($title);
$emailManager->setReceiver($receiver);
$emailManager->setOrigin($origin);

$emailManager->setAssignation([
'content' => 'Bla bla bla',
'title' => $title,
'site' => $this->get('settingsBag')->get('site_name'),
'disclaimer' => 'You are receiving this email because you rocks!',

]);
$emailManager->setEmailTemplate('@MySuperTheme/emails/email.html.twig');
$emailManager->setEmailPlainTextTemplate('@MySuperTheme/emails/email.txt.twig');
$emailManager->send();

Assignation works the same way as HTML template for your website, you must assign every content and infor-
mations you’ll need to print in your emails.

Note: Be careful, every image path or links must be an absolute URL, not a path as your receivers won’t be able
to resolve your full domain name. Make sure you are using url() instead of path() for links and wrap with
absolute_url() method your static assets (like in the example before).

Your emails/email.html.twig template should inherits from Roadiz base_email.html.twig template.

{% extends 'base_email.html.twig' %}

{% block title %}<title>{{ title }}</title>{% endblock %}

{% block content_table %}
<table width="100%" cellpadding="0" cellspacing="0">

<tr>
<td class="content-block">

<h1>{{ title }}</h1>
</td>

</tr>
<tr>

<td class="content-block">{{ content|markdown }}</td>

3.1. Developer documentation 93

Roadiz Documentation, Release 1.4.0

</tr>
</table>

{% endblock %}

Your emails/email.txt.twig template should inherits from Roadiz base_email.txt.twig template.

{% extends 'base_email.txt.twig' %}

{% block title %}{{ title }}{% endblock %}
{% block content_table %}{{ content|markdown|strip_tags }}{% endblock %}

3.1.6 Forms

Roadiz uses Symfony forms logic and API. However, we made ready-made contact and custom forms builders to
ease up your development and even make form-building available for your website editors.

Building contact forms

With Roadiz you can easily create simple contact forms with ContactFormManager class. Your controller
has a convenient shortcut to create this manager with $this->createContactFormManager() method.

If you want to add your own fields, you can use the manager’ form-builder with
$contactFormManager->getFormBuilder();. Then add your field using standard Symfony form
syntax. Do not forget to use Constraints to handle errors.

One contact-form for one action

Here is an example to create your contact form in your controller action.

1 use Symfony\Component\Validator\Constraints\File;
2 use Symfony\Component\Form\Extension\Core\Type\CheckboxType;
3 use Symfony\Component\Form\Extension\Core\Type\FileType;
4 use Symfony\Component\Form\Extension\Core\Type\SubmitType;
5

6 ...
7 // Create contact-form manager and add 3 default fields.
8 $contactFormManager = $this->createContactFormManager()
9 ->withDefaultFields();

10 /*
11 * (Optional) Add custom fields...
12 */
13 $formBuilder = $contactFormManager->getFormBuilder();
14 $formBuilder->add('callMeBack', CheckboxType::class, [
15 'label' => 'call.me.back',
16 'required' => false,
17])
18 ->add('document', FileType::class, [
19 'label' => 'document',
20 'required' => false,
21 'constraints' => [
22 new File([
23 'maxSize' => $contactFormManager->getMaxFileSize(),
24 'mimeTypes' => $contactFormManager->getAllowedMimeTypes(),
25]),
26]
27])
28 ->add('send', SubmitType::class, [
29 'label' => 'send.contact.form',

94 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

30]);
31

32 /*
33 * This is the most important point. handle method will perform form
34 * validation and send email.
35 *
36 * Handle method should return a Response object if everything is OK.
37 */
38 if (null !== $response = $contactFormManager->handle()) {
39 return $response;
40 }
41

42 $form = $contactFormManager->getForm();
43

44 // Assignate your form view to display it in Twig.
45 $this->assignation['contactForm'] = $form->createView();

In this example, we used withDefaultFieldsmethod which add automatically email, name and message
fields with right validation contraints. This method is optional and you can add any field you want manually, just
keep in mind that you should always ask for an email.

Then in your contact page Twig template:

1 {#
2 # Display contact errors
3 #}
4 {% for label, messages in app.flashes(['warning', 'error']) %}
5 {% for message in messages %}
6 <p class="alert alert-{{ label }}">
7 {{- message -}}
8 </p>
9 {% endfor %}

10 {% endfor %}
11 {#
12 # Display contact form
13 #}
14 {% form_theme contactForm '@MyTheme/forms.html.twig' %}
15 {{ form(contactForm) }}

Using contact-form in block controllers

If you want to use contact-forms in blocks instead of a full page, you will need to make your redirection response
bubble through Twig render. The only way to stop Twig is to throw an exception and to pass your Redirect or
Json response within your Exception.

Roadiz makes this possible with RZ\Roadiz\Core\Exceptions\ForceResponseException. For ex-
ample, in a Themes\MyAwesomeTheme\Controllers\Blocks\ContactBlockController,
instead of returning the contactFormManager response, you will have to throw a
ForceResponseException with it as an argument.

1 // ./themes/MyAwesomeTheme/Controllers/Blocks/ContactBlockController.php
2

3 use RZ\Roadiz\Core\Exceptions\ForceResponseException;
4

5 ...
6 // Create contact-form manager and add 3 default fields.
7 $contactFormManager = $this->createContactFormManager()
8 ->withDefaultFields();
9

10 if (null !== $response = $contactFormManager->handle()) {
11 /*

3.1. Developer documentation 95

Roadiz Documentation, Release 1.4.0

12 * Force response to bubble through Twig rendering process.
13 */
14 throw new ForceResponseException($response);
15 }
16

17 $form = $contactFormManager->getForm();
18

19 // Assignate your form view to display it in Twig.
20 $this->assignation['contactForm'] = $form->createView();
21

22 return $this->render('blocks/contactformblock.html.twig', $this->assignation);

Then, in your master controller (i.e. PageController), render method will automatically catch your
ForceResponseException exception in order to extract the forced response object. Then it will return your re-
sponse instead of your page twig rendered output.

Securing your form with Google reCAPTCHA

Roadiz can seamlessly use Google reCAPTCHA to secure your contact form against robots. All you need to do
is to register on https://www.google.com/recaptcha/ to ask for a sitekey and a secret. Once you’ve got these two
keys, add them to your Roadiz settings.

Then, just use withGoogleRecaptcha() method on your contact-form manager.

// Create contact-form manager, add 3 default fields and add a reCAPTCHA.
$contactFormManager = $this->createContactFormManager()

->withDefaultFields()
->withGoogleRecaptcha();

Do not forget to add recaptcha form-template and to embed google’s javascript.

<script src='https://www.google.com/recaptcha/api.js'></script>

{# In your theme’ forms.html.twig file #}
{% block recaptcha_widget -%}

<div class="g-recaptcha" data-sitekey="{{ configs.publicKey }}"></div>
{%- endblock recaptcha_widget %}

Sending contact form and accept application/json

If you want to send your contact form using window.fetch and window.FormData, Roadiz will still generate an
html-based Response or RedirectResponse. You need to add Accept: application/json header to your request so
that Roadiz will respond as JSON. Roadiz JsonResponse will contain success message or error messages for each
wrong fields.

Building custom forms

Building a custom form looks like building a node but it is a lot simpler! Let’s have a look at structure image.

96 Chapter 3. Developer documentation

https://www.google.com/recaptcha/

Roadiz Documentation, Release 1.4.0

After creating a custom form, you add some question. The questions are the CustomFormField type.

The answer is saved in two entities:

• in CustomFormAnswer

• in CustomFormFieldAttribute

The CustomFormAnswer will store the IP and the submitted time. While question answer will be in CustomForm-
FieldAttribute with the CustomFormAnswer id and the CustomFormField id.

Adding custom form to your theme

If you want to integrate your custom-forms into your theme, you can use Roadiz CustomFormHelper class to
generate a standard FormInterface and to create a view into your theme templates.

First you must create a dedicated action for your node or your block if you used {{
nodeSource|render(@AwesomeTheme) }} Twig filter.

1 use RZ\Roadiz\Core\Entities\CustomForm;
2 use RZ\Roadiz\Core\Exceptions\EntityAlreadyExistsException;
3 use RZ\Roadiz\Core\Exceptions\ForceResponseException;
4 use RZ\Roadiz\Utils\CustomForm\CustomFormHelper;
5 use Symfony\Component\Form\FormError;
6 use Symfony\Component\HttpFoundation\JsonResponse;
7

8 // ...
9

10 /*
11 * Get your custom form instance from your node-source
12 * only if you added a *custom-form reference field*.
13 */
14 $customForms = $this->nodeSource->getCustomformReference();
15 if (isset($customForms[0]) && $customForms[0] instanceof CustomForm) {
16 /** @var CustomForm $customForm */
17 $customForm = $customForms[0];
18

19 /*

3.1. Developer documentation 97

Roadiz Documentation, Release 1.4.0

20 * Verify if custom form is still open
21 * for answers
22 */
23 if ($customForm->isFormStillOpen()) {
24 /*
25 * CustomFormHelper will generate Symfony form against
26 * Roadiz custom form entity.
27 * You can add a Google Recaptcha passing following options.
28 */
29 $helper = new CustomFormHelper($this->get('em'), $customForm);
30 $form = $helper->getFormFromAnswer($this->get('formFactory'), null, true,

→˓[
31 'recaptcha_public_key' => $this->get('settingsBag')->get('recaptcha_

→˓public_key'),
32 'recaptcha_private_key' => $this->get('settingsBag')->get('recaptcha_

→˓private_key'),
33 'request' => $request,
34]);
35 $form->handleRequest($request);
36

37 if ($form->isSubmitted() && $form->isValid()) {
38 try {
39 $answer = $helper->parseAnswerFormData($form, null, $request->

→˓getClientIp());
40

41 if ($request->isXmlHttpRequest()) {
42 $response = new JsonResponse([
43 'message' => $this->getTranslator()->trans('form_has_been_

→˓successfully_sent')
44]);
45 } else {
46 $this->publishConfirmMessage(
47 $request,
48 $this->getTranslator()->trans('form_has_been_successfully_

→˓sent')
49);
50 $response = $this->redirect($this->generateUrl($this->

→˓nodeSource->getParent()));
51 }
52 /*
53 * If you are in a BlockController use ForceResponseException
54 */
55 throw new ForceResponseException($response);
56 /*
57 * Or directly return redirect response.
58 */
59 //return $response;
60 } catch (EntityAlreadyExistsException $e) {
61 $form->addError(new FormError($e->getMessage()));
62 }
63 }
64

65 $this->assignation['session']['messages'] = $this->get('session')->
→˓getFlashBag()->all();

66 $this->assignation['form'] = $form->createView();
67 }
68 }

If you didn’t do it yet, create a custom form theme in your views/ folder:

1 {#
2 # AwesomeTheme/Resources/views/form.html.twig
3 #}

98 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

4 {% extends "bootstrap_3_layout.html.twig" %}
5

6 {% block form_row -%}
7 <div class="form-group form-group-{{ form.vars.block_prefixes[1] }} form-

→˓group-{{ form.vars.name }}">
8 {% if form.vars.block_prefixes[1] != 'separator' %}
9 {{- form_label(form) -}}

10 {% endif %}
11 {{- form_errors(form) -}}
12 {#
13 # Render field description inside your form
14 #}
15 {% if form.vars.attr['data-description'] %}
16 <div class="form-description">
17 {{ form.vars.attr['data-description']|markdown }}
18 </div>
19 {% endif %}
20 {{- form_widget(form) -}}
21 </div>
22 {%- endblock form_row %}
23

24 {% block recaptcha_widget -%}
25 <div class="g-recaptcha" data-sitekey="{{ configs.publicKey }}"></div>
26 {%- endblock recaptcha_widget %}

In your main view, add your form and use your custom form theme:

1 {#
2 # AwesomeTheme/Resources/views/form-blocks/customformblock.html.twig
3 #}
4 {% if form %}
5 {% form_theme form '@AwesomeTheme/form.html.twig' %}
6 {{ form_start(form) }}
7 {{ form_widget(form) }}
8 <div class="form-group">
9 <button class="btn btn-primary" type="submit">{% trans %}send_form{%

→˓endtrans %}</button>
10 </div>
11 {{ form_end(form) }}
12 {% else %}
13 <p class="alert alert-warning">{% trans %}form_is_not_available{% endtrans %}

→˓</p>
14 {% endif %}

3.1.7 Services

Roadiz is built upon Pimple dependency injection container. Thanks to this architecture, all Core and Backoffice
services are available from any controller in your themes.

$this->get('nameOfService');

• Doctrine entity manager: $this->get('em')

• Twig rendering environment: $this->get('twig.environment')

• Translator: $this->get('translator')

• Url matcher: $this->get('urlMatcher')

• Url generator: $this->get('urlGenerator')

• Authorization checker: $this->get('securityAuthorizationChecker')

3.1. Developer documentation 99

http://pimple.sensiolabs.org

Roadiz Documentation, Release 1.4.0

• User token storage: $this->get('securityTokenStorage')

• Firewall: $this->get('firewall')

• Assets packages: $this->get('assetPackages')

• Email manager: $this->get('emailManager')

• Contact form manager: $this->get('contactFormManager')

• Accessing global settings ParameterBag: $this->get('settingsBag')

• Accessing global node-types ParameterBag: $this->get('nodeTypesBag')

• Getting an entity handler: $this->get('factory.handler')->getHandler($myEntity)

• . . .

Entity APIs

All these services are Doctrine repository wrappers meant to ease querying entities inside your themes and ac-
cording to AuthorizationChecker. This will implicitely check if nodes or node-sources are published when
you request them without bothering to insert the right criteria in your findBy calls.

Each of these implements AbstractApi methods getBy and getOneBy

• nodeApi

• nodeTypeApi

• nodeSourceApi

• tagApi

Using Solr API

Solr is a really powerful tool to search over your node database with a clever plain-text search engine and the ability
to highlight your criteria in the search results. Before going further, make sure that a Solr server is available and
that it is well configured in your config.yml. You can use the bin/roadiz solr:check command to
verify and then bin/roadiz solr:reindex command to force synchronizing your node database with Solr
index.

You can use the solr.search.nodeSource service and its two methods to get node-sources from a
search query.

Simple search results

$this->get('solr.search.nodeSource')->search() method will return a
SolrSearchResults traversable object listing NodesSources:

$criteria = [];
/** @var SolrSearchResults $results */
$results = $this->get('solr.search.nodeSource')

->search(
$request->get('q'), # Use ?q query parameter to search with
$criteria, # a simple criteria array to filter search

→˓results
10, # result count
true # Search in tags too
10000 # Proximity (optional, default: 10000)
1 # Page (optional, default: 1)

);

foreach ($results as $nodeSource) {

100 Chapter 3. Developer documentation

http://api.roadiz.io/RZ/Roadiz/CMS/Utils/NodeApi.html
http://api.roadiz.io/RZ/Roadiz/CMS/Utils/NodeTypeApi.html
http://api.roadiz.io/RZ/Roadiz/CMS/Utils/NodeSourceApi.html
http://api.roadiz.io/RZ/Roadiz/CMS/Utils/TagApi.html

Roadiz Documentation, Release 1.4.0

NodesSources object
echo $nodeSource->getTitle();

}

Search results with highlighting

$this->get('solr.search.nodeSource')->searchWithHighlight() method will return a
SolrSearchResults traversable object with arrays with a simple structure: nodeSource for the
NodesSources object and highlighting for the html data with highlighted text wrapped in span.
solr-highlight html tag.

$criteria = [];
/** @var SolrSearchResults $results */
$results = $this->get('solr.search.nodeSource')

->searchWithHighlight(
$request->get('q'), # Use ?q query parameter to search with
$criteria, # a simple criteria array to filter search

→˓results
10, # result count
true # Search in tags too
10000 # Proximity (optional, default: 10000)
1 # Page (optional, default: 1)

);

foreach ($results as $result) {
NodesSources object
$nodeSource = $result['nodeSource'];
String object (HTML)
$highlight = $result['highlighting'];

}

Count search results

$this->get('solr.search.nodeSource')->search() and $this->get('solr.
search.nodeSource')->searchWithHighlight()``methods will return a
``SolrSearchResults traversable object. You can use SolrSearchResults::getResultCount()
to get results count.

$criteria = [];
/** @var SolrSearchResults $results */
$results = $this->get('solr.search.nodeSource')

->search(
$request->get('q'), # Use ?q query parameter to search with
$criteria, # a simple criteria array to filter search

→˓results
10, # result count
true # Search in tags too
10000 # Proximity (optional, default: 10000)
1 # Page (optional, default: 1)

);

$pageCount = ceil($results->getResultCount()/$this->getItemPerPage());
$itemPerPage = $this->getItemPerPage();

3.1. Developer documentation 101

Roadiz Documentation, Release 1.4.0

Search criteria

Solr will search in NodesSources index by default, but it will not filter by translation, type or visibility. You can
add your own search criteria using similar filter names as nodeSourceApi.

• visible: boolean

• translation: a Translation object

• _locale: string

• tags: a Tag object or Tag array

• nodeType: a NodeType object

• status: defaults to Node::PUBLISHED

• publishedAt: \DateTime or array like EntityRepository::findBy method.

$criteria = [
'visible' => true,
'translation' => $translation,
// Returns only published nodes-sources
'publishedAt' => ['<=', new \DateTime()],
'nodeType' => [

$this->get('nodeTypesBag')->get('Page'),
// ...

],
];

3.1.8 Services list

Here is the current list of Roadiz services registered into Kernel container. These can be overridden or used
from any Controller with $this->get() method.

Kernel

stopwatch Symfony\Component\Stopwatch\Stopwatch

kernel RZ\Roadiz\Core\Kernel

dispatcher Symfony\Component\EventDispatcher\EventDispatcher

Assets

versionStrategy Symfony\Component\Asset\VersionStrategy\EmptyVersionStrategy

interventionRequestSupportsWebP bool

interventionRequestConfiguration AM\InterventionRequest\Configuration

interventionRequestSubscribers array

interventionRequestLogger Monolog\Logger

interventionRequest AM\InterventionRequest\InterventionRequest

assetPackages RZ\Roadiz\Utils\Asset\Packages

Back-office

backoffice.entries array

102 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Bags

settingsBag RZ\Roadiz\Core\Bags\Settings

rolesBag RZ\Roadiz\Core\Bags\Roles

nodeTypesBag RZ\Roadiz\Core\Bags\NodeTypes

Console

console.commands array

Debug

messagescollector DebugBar\DataCollector\MessagesCollector

doctrine.debugstack Doctrine\DBAL\Logging\DebugStack

debugbar RZ\Roadiz\Utils\DebugBar\RoadizDebugBar

debugbar.renderer DebugBar\JavascriptRenderer

Doctrine

doctrine.relative_entities_paths array

doctrine.entities_paths array

em.config Doctrine\ORM\Configuration

em Doctrine\ORM\EntityManager, you can access it using $this->get(EntityManagerInterface::class).

em.eventSubscribers array

nodesSourcesUrlCacheProvider Doctrine\Common\Cache\CacheProvider

CacheProvider::class Factory Creates a CacheProvider::class using Roadiz configuration, , you can ac-
cess it using $this->get(CacheProvider::class).

Embed documents

document.platforms array

embed_finder.youtube Factory RZ\Roadiz\Utils\MediaFinders\YoutubeEmbedFinder

embed_finder.vimeo Factory RZ\Roadiz\Utils\MediaFinders\VimeoEmbedFinder

embed_finder.dailymotion Factory RZ\Roadiz\Utils\MediaFinders\DailymotionEmbedFinder

embed_finder.soundcloud Factory RZ\Roadiz\Utils\MediaFinders\SoundcloudEmbedFinder

embed_finder.mixcloud Factory RZ\Roadiz\Utils\MediaFinders\MixcloudEmbedFinder

embed_finder.spotify Factory RZ\Roadiz\Utils\MediaFinders\SpotifyEmbedFinder

embed_finder.ted Factory RZ\Roadiz\Utils\MediaFinders\TedEmbedFinder

embed_finder.twitch Factory RZ\Roadiz\Utils\MediaFinders\TwitchEmbedFinder

3.1. Developer documentation 103

Roadiz Documentation, Release 1.4.0

Entity Api

nodeApi RZ\Roadiz\CMS\Utils\NodeApi

nodeTypeApi RZ\Roadiz\CMS\Utils\NodeTypeApi

nodeSourceApi RZ\Roadiz\CMS\Utils\NodeSourceApi

tagApi RZ\Roadiz\CMS\Utils\TagApi

Factories

emailManager Factory RZ\Roadiz\Utils\EmailManager

contactFormManager Factory RZ\Roadiz\Utils\ContactFormManager

NodeFactory::class RZ\Roadiz\Utils\Node\NodeFactory. Factory to create new nodes from a title,
a node-type and translation.

TagFactory::class RZ\Roadiz\Utils\Tag\TagFactory. Factory to create new tags from a title, a parent
tag and a translation.

factory.handler RZ\Roadiz\Core\Handlers\HandlerFactory Creates any Handler based on entity
class.

node.handler Factory RZ\Roadiz\Core\Handlers\NodeHandler

nodes_sources.handler Factory RZ\Roadiz\Core\Handlers\NodesSourcesHandler

node_type.handler Factory RZ\Roadiz\Core\Handlers\NodeTypeHandler

node_type_field.handler Factory RZ\Roadiz\Core\Handlers\NodeTypeFieldHandler

document.handler Factory RZ\Roadiz\Core\Handlers\DocumentHandler

custom_form.handler Factory RZ\Roadiz\Core\Handlers\CustomFormHandler

custom_form_field.handler Factory RZ\Roadiz\Core\Handlers\CustomFormFieldHandler

folder.handler Factory RZ\Roadiz\Core\Handlers\FolderHandler

font.handler Factory RZ\Roadiz\Core\Handlers\FontHandler

group.handler Factory RZ\Roadiz\Core\Handlers\GroupHandler

newsletter.handler Factory RZ\Roadiz\Core\Handlers\NewsletterHandler

tag.handler Factory RZ\Roadiz\Core\Handlers\TagHandler

translation.handler Factory RZ\Roadiz\Core\Handlers\TranslationHandler

document.viewer Factory RZ\Roadiz\Core\Viewers\DocumentViewer Deprecated:

translation.viewer Factory RZ\Roadiz\Core\Viewers\TranslationViewer

user.viewer Factory RZ\Roadiz\Core\Viewers\UserViewer

document.url_generator Factory RZ\Roadiz\Utils\UrlGenerators\DocumentUrlGenerator

document.factory Factory RZ\Roadiz\Utils\Document\DocumentFactory

Forms

formValidator Symfony\Component\Form\Validator\ValidatorInterface

formFactory Symfony\Component\Form\FormFactoryInterface

form.extensions array

form.type.extensions array

104 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Rollerworks\Component\PasswordStrength\Blacklist\BlacklistProviderInterface Blacklist chained
provider for Password forms.

Rollerworks\Component\PasswordStrength\Validator\Constraints\BlacklistValidator Blacklist form val-
idator to be used and instanciated by Symfony ContainerConstraintValidatorFactory.

Importers

RZ\Roadiz\CMS\Importers\ChainImporter Factory Creates an chained importer that will import serialized data
based on required entity class.

RZ\Roadiz\CMS\Importers\GroupsImporter Factory Creates an importer for Group

RZ\Roadiz\CMS\Importers\NodesImporter Factory Creates an importer for Node

RZ\Roadiz\CMS\Importers\NodeTypesImporter Factory Creates an importer for NodeType

RZ\Roadiz\CMS\Importers\RolesImporter Factory Creates an importer for Role

RZ\Roadiz\CMS\Importers\SettingsImporter Factory Creates an importer for Setting

RZ\Roadiz\CMS\Importers\TagsImporter Factory Creates an importer for Tag

Logger

logger.handlers array

logger.path string

logger Monolog\Logger

Mailer

mailer.transport \Swift_SmtpTransport or \Swift_SendmailTransport

mailer \Swift_Mailer

Routing

httpKernel Symfony\Component\HttpKernel\HttpKernel

requestStack Symfony\Component\HttpFoundation\RequestStack

requestContext Symfony\Component\Routing\RequestContext

resolver Symfony\Component\HttpKernel\Controller\ControllerResolver

argumentResolver Symfony\Component\HttpKernel\Controller\ArgumentResolver

router Symfony\Cmf\Component\Routing\ChainRouter

staticRouter RZ\Roadiz\Core\Routing\StaticRouter

nodeRouter RZ\Roadiz\Core\Routing\NodeRouter

redirectionRouter RZ\Roadiz\Core\Routing\RedirectionRouter

urlGenerator Alias to router

httpUtils Symfony\Component\Security\Http\HttpUtils

routeListener RZ\Roadiz\Core\Events\TimedRouteListener

routeCollection RZ\Roadiz\Core\Routing\RoadizRouteCollection

3.1. Developer documentation 105

Roadiz Documentation, Release 1.4.0

Security

session.pdo \PDO or null if pdo session are not configured.

session.storage Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage

session Symfony\Component\HttpFoundation\Session\Session

sessionTokenStorage Symfony\Component\Security\Csrf\TokenStorage\SessionTokenStorage

csrfTokenManager Symfony\Component\Security\Csrf\CsrfTokenManager

securityAuthenticationUtils Symfony\Component\Security\Http\Authentication\AuthenticationUtils

contextListener Symfony\Component\Security\Http\Firewall\ContextListener

accessMap Symfony\Component\Security\Http\AccessMap

userProvider RZ\Roadiz\Core\Handlers\UserProvider

userChecker Symfony\Component\Security\Core\User\UserChecker

daoAuthenticationProvider Symfony\Component\Security\Core\Authentication\Provider\DaoAuthenticationProvider

rememberMeAuthenticationProvider Symfony\Component\Security\Core\Authentication\Provider\RememberMeAuthenticationProvider

rememberMeCookieName string

rememberMeCookieLifetime integer

cookieClearingLogoutHandler Symfony\Component\Security\Http\Logout\CookieClearingLogoutHandler

tokenBasedRememberMeServices Symfony\Component\Security\Http\RememberMe\TokenBasedRememberMeServices

rememberMeListener Symfony\Component\Security\Http\Firewall\RememberMeListener

authenticationProviderList array<Symfony\Component\Security\Core\Authentication\Provider\AuthenticationProviderInterface>

authenticationManager Symfony\Component\Security\Core\Authentication\AuthenticationProviderManager

security.voters array

accessDecisionManager Symfony\Component\Security\Core\Authorization\AccessDecisionManager

securityAuthenticationTrustResolver Symfony\Component\Security\Core\Authentication\AuthenticationTrustResolver

securityAuthorizationChecker Symfony\Component\Security\Core\Authorization\AuthorizationChecker

securityTokenStorage Symfony\Component\Security\Core\Authentication\Token\Storage\TokenStorage

securityAccessListener Symfony\Component\Security\Http\Firewall\AccessListener

roleHierarchy RZ\Roadiz\Utils\Security\DoctrineRoleHierarchy

roleHierarchyVoter Symfony\Component\Security\Core\Authorization\Voter\RoleHierarchyVoter

groupVoter RZ\Roadiz\Core\Authorization\Voter\GroupVoter

switchUser Symfony\Component\Security\Http\Firewall\SwitchUserListener

firewallMap Symfony\Component\Security\Http\FirewallMap

passwordEncoder array

userImplementations array

userEncoderFactory Symfony\Component\Security\Core\Encoder\EncoderFactory

firewall RZ\Roadiz\Utils\Security\TimedFirewall

accessDeniedHandler RZ\Roadiz\Core\Authorization\AccessDeniedHandler

106 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

Serialization

JMSSerializerSerializerBuilder JMS\Serializer\SerializerBuilder

serializer.subscribers array

serializer JMS\Serializer\Serializer

Solr

solr Solarium\Client

AdapterInterface Solarium\Core\Client\Adapter\AdapterInterface

SolariumFactoryInterface RZ\Roadiz\Core\SearchEngine\SolariumFactory

solr.ready boolean Return true if Solr server is reachable.

solr.search.nodeSource Factory RZ\Roadiz\Core\SearchEngine\NodeSourceSearchHandler

solr.search.document Factory RZ\Roadiz\Core\SearchEngine\DocumentSearchHandler

Themes

themeResolver RZ\Roadiz\Utils\Theme\StaticThemeResolver

ThemeGenerator RZ\Roadiz\Utils\Theme\ThemeGenerator

logger.themes Monolog\Logger

Translation

defaultTranslation RZ\Roadiz\Core\Entities\Translation or null if you don’t have any default
translation.

translator.locale string or null

translator Symfony\Component\Translation\Translator

Twig

twig.cacheFolder string

twig.loaderFileSystem Twig\Loader\FilesystemLoader

twig.environment_class Private Twig\Environment

twig.formRenderer Symfony\Bridge\Twig\Form\TwigRendererEngine

twig.environment Twig\Environment

twig.extensions Doctrine\Common\Collections\ArrayCollection

twig.filters Doctrine\Common\Collections\ArrayCollection

twig.fragmentHandler Symfony\Component\HttpKernel\Fragment\FragmentHandler

twig.profile Twig\Profiler\Profile

twig.routingExtension Symfony\Bridge\Twig\Extension\RoutingExtension

twig.centralTruncateExtension Twig\TwigFilter

twig.cacheExtension Asm89\Twig\CacheExtension\Extension

3.1. Developer documentation 107

Roadiz Documentation, Release 1.4.0

Configuration

config.path string

config.handler RZ\Roadiz\Config\YamlConfigurationHandler

config array

Workflow

workflow.registry Symfony\Component\Workflow\Registry

workflow.node_workflow RZ\Roadiz\Workflow\NodeWorkflow

Utils

utils.nodeNameChecker RZ\Roadiz\Utils\Node\NodeNameChecker

utils.uniqueNodeGenerator RZ\Roadiz\Utils\Node\UniqueNodeGenerator

utils.universalDataDuplicator RZ\Roadiz\Utils\Node\UniversalDataDuplicator

3.1.9 Serialization

$response = new JsonResponse(
$this->get('serializer')->serialize(

$this->nodeSource,
'json',
SerializationContext::create()->setGroups(['nodes_sources', 'id'])

),
Response::HTTP_OK,
[],
true

);

Groups

id Serialize every entity id.

timestamps Serialize every date-timed entity createdAt and updatedAt fields.

position Serialize every entity position fields.

color Serialize every entity color fields.

nodes_sources Serialize entities in a NodesSources context (all fields).

nodes_sources_base Serialize entities in a NodesSources context, but with essential information.

nodes_sources_documents Serialize documents linked to a NodesSources for each virtual field.

nodes_sources_default Serialize NodesSources fields not contained in any group.

nodes_sources_‘‘group‘‘ Custom serialization groups are created according to your node-typ fields groups.
For example, if you set a field to a link group, nodes_sources_link serialization group will be
automatically generated for this field. Be careful, Roadiz will use groups canonical names to generate
serialization groups, it can mix _ and -.

node Serialize entities in a Node context.

tag Serialize entities in a Tag context.

tag_base Serialize entities in a Tag context.

108 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

node_type Serialize entities in a NodeType context.

attribute Serialize entities in a Attribute context.

custom_form Serialize entities in a CustomForm context.

document Serialize entities in a Document context.

folder Serialize entities in a Folder context.

translation Serialize entities in a Translation context.

setting Serialize entities in a Setting context.

setting_group Serialize entities in a SettingGroup context.

3.1.10 Case studies

Some step-to-step guides to work with Roadiz.

Download a website on my computer to work with Vagrant

This case study is meant to get a fresh development environment from an existing Roadiz Source edition website
and theme. Following code snippets are using some variables data, in theses examples I’ll use:

• MYUSER as the MySQL database user.

• MYPASSWORD as the MySQL database user password.

• MYDATABASE as the MySQL database name.

• ~/Documents/Websites as the working directory on your own computer.

• database-YYYY-mm-dd.sql is the mysql dump file name, replace YYYY-mm-dd with the current
date.

• mysuperwebsite is your website root folder.

• git@github.com:johndoe/SuperTheme.git is an example Github repository for your theme.

• SuperTheme is an example theme name and folder.

On the production server:

1. Generate a database dump on your production server.

mysqldump -uMYUSER -pMYPASSWORD MYDATABASE > database-YYYY-mm-dd.sql

Then download it on your computer. You can also use phpmyadmin web tool to export your database tables. Make
sure to disable foreign key verification and add the DROP IF EXISTS directive on phpmyadmin export form.

On your computer:

1. Clone Roadiz on your favorite folder, choose well between master or develop branch if you want the stable
version or the latest features.

cd ~/Documents/Websites;
Here I choose the develop branch, because I’m warrior
git clone -b develop https://github.com/roadiz/roadiz.git mysuperwebsite;

2. Clone your website theme in Roadiz themes/ folder, choose well your branch too. If you already have a
develop branch, clone with -b develop option.

3.1. Developer documentation 109

Roadiz Documentation, Release 1.4.0

cd ~/Documents/Websites/mysuperwebsite/themes;
My theme already has a develop branch so...
git clone -b develop git@github.com:johndoe/SuperTheme.git SuperTheme;

3. [Optional] Initialize git-flow on the theme. You should always work on develop. Master branch is only for
releases. If you don’t have git-flow on your computer, you can find some help on the official documentation.

cd ~/Documents/Websites/mysuperwebsite/themes/SuperTheme;
You must fetch every available branches before initializing git flow
git checkout master;
git checkout develop;
git flow init;
Follow instructions
Git flow should checkout on develop branch for you

4. Install Roadiz’ Composer dependencies (after cloning the theme to be sure that all composer dependencies
are loaded)

cd ~/Documents/Websites/mysuperwebsite;
composer install --no-dev;

5. Launch your Vagrant environment. Do not to automatically provision your VM if you want to choose what
tool to install.

vagrant up --no-provision;
... lots of lines, bla bla bla

Choose tools to install on your VM, roadiz provisioner is mandatory. . . obviously, devtools provisioner will
install Composer, Node.js, Grunt and Bower commands. If you have lots of website on your computer, it’s better
to install these tools directly on your host machine, they will be more effective than on the VM. And you will be
able to take advantage of Composer and NPM cache between your dev websites.

Everything
vagrant provision --provision-with roadiz,phpmyadmin,mailcatcher,solr,devtools
OR on a dev computer
vagrant provision --provision-with roadiz,phpmyadmin,mailcatcher,solr

6. Import your database dump. First, you’ll need to copy it into your Roadiz website to make it available
within your Vagrant VM. Then import it in your VM using the mysql tool.

mv ~/Downloads/database-YYYY-mm-dd.sql ~/Documents/Websites/mysuperwebsite/
→˓database-YYYY-mm-dd.sql;
cd ~/Documents/Websites/mysuperwebsite;
Enter your VM
vagrant ssh;
Your website is located in /var/www folder
cd /var/www;
mysql -uroadiz -proadiz roadiz < database-YYYY-mm-dd.sql;
Exit your VM
exit;

7. Update your conf/config.yml file to fill in your mysql credentials.

cd ~/Documents/Websites/mysuperwebsite;
composer should have create a starter config file for you
subl conf/config.yml; # If you work SublimeText

8. Use the bin/roadiz generate:nsentities to regenerate Doctrine entities existing in database
but not as files.

110 Chapter 3. Developer documentation

http://danielkummer.github.io/git-flow-cheatsheet/

Roadiz Documentation, Release 1.4.0

cd ~/Documents/Websites/mysuperwebsite;
vagrant ssh;
cd /var/www;
bin/roadiz generate:nsentities;
You may have to check database schema if your production website is not up to
date with latest Roadiz
bin/roadiz orm:schema-tool:update --dump-sql --force;

9. Download your production documents to your dev VM. You don’t have to do this within your VM.

cd ~/Documents/Websites/mysuperwebsite/files;
rsync -avcz -e "ssh -p 22" myuser@superwebsite.com:~/path/to/roadiz/files/ ./
do not forget ending slashes in both paths.

10. If you are using a Vagrant VM you have to add your IP address to the dev.php file to authorize your host
computer to use the development environment.

11. Connect to http://localhost:8080/dev.php to begin. Every outgoing emails should be catched by
Mailcatcher. You can see them at address http://localhost:1080.

3.1.11 Contributing

If you want to contribute to Roadiz project by reporting issues or hacking code, let us thank you! You are awesome!

Reporting issues

When you encounter an issue with Roadiz we would love to hear about it. Because thanks to you, we can make
the most awesome and stable CMS! If you submit a bug report please include all informations available to you,
here are some things you can do:

• Try to simplify the things you are doing until getting a minimal set of actions reproducing the problem.

• Do not forget to join a screenshot or a trace of your error.

Running tests

If you developed a new feature or simply want to try out an installation of Roadiz you can run unit-tests. For this
you will need to install the testing dependencies, this can easily be done using:

composer update --dev

You have to run unit-tests on a dedicated database not to lose any existing Roadiz website. You can create a
conf/config_test.yml YAML configuration which will be read only for this environment. Then, wire this
configuration to a blank database. Unit-tests can be launched by the following command:

php bin/phpunit -v --bootstrap=tests/bootstrap.php --whitelist ./src tests/

If your are writing a feature, don’t forget to write a unit test for it. You can find some example in the folder tests.
In Roadiz, there are 4 types of tests:

• Standard tests which must extend \PHPUnit_Framework_TestCase. These tests should only test
simple logic methods and classes as they won’t require Roadiz kernel to boot up.

• Kernel dependent tests which must extend RZRoadizTestsKernelDependentCase‘. These tests should only
test logic classes and methods inside Roadiz kernel without any database concern.

• Schema dependent tests which must extend RZ\Roadiz\Tests\SchemaDependentCase. These
tests should only test low level database methods and classes without relying on node-types or translations.
Use this type of testing if you want to test Roadiz entities and repositories methods except for Nodes and
NodeTypes.

3.1. Developer documentation 111

Roadiz Documentation, Release 1.4.0

• DefaultTheme dependent tests which must extend RZ\Roadiz\Tests\DefaultThemeDependentCase.
These tests rely on a complete Roadiz installation with existing node-types and translation. They are longer
to prepare as PHPUnit must install a fresh Roadiz with DefaultTheme at each case.

Note: Each SchemaDependentCase and DefaultThemeDependentCase will provision a fresh Roadiz
database then drop it. Make sure to use a dedicated database. If you execute unit-tests from an existing Roadiz
website, you’ll have to run bin/roadiz generate:nsentities at the end of your testing session to build
your NodesSources classes again (every environment share the same gen-src folder).

Coding style

The code you contributed to the project should respect the guidelines defined in PHP PSR2 standard. If you install
the requirements for devs by the command composer update --dev, you can use phpcs to check your code.
You can copy and paste the following command-lines to check easily:

php bin/phpcs --report=full --report-file=./report.txt -p ./

Or you can use phpcbf to automatically fix code style issues.

php bin/phpcbf --report=full --report-file=./report.txt -p ./

Please take those rules into account, we aim to have a clean codebase. A coherent codestyle will contribute to
Roadiz stability. Your code will be checked when we will be considering your pull requests.

Static analysis

Then we use phpstan as a static code analyzer to check bugs and misuses before they occur:

php bin/phpstan analyse -c phpstan.neon -l 1 src themes/Rozier themes/Install

Standard Edition

Roadiz Standard Edition comes with a Makefile to make it easier to test your sources and your theme. Just
execute make test and phpcbf and phpstan will test your theme sources. If you are using Gitlab CI/CD
with our .gitlab-ci.yml file, those tests will be executed at each pipeline trigger.

3.1.12 Troubleshooting

Empty caches manually for an environment

If you experience errors only on a dedicated environment such as prod, dev or install, it means that cache
is not fresh for these environments. As a first try, you should always call bin/roadiz cache:clear -e
prod; (replace prod by your environment) in command line.

If you still get errors from a specific env and you are using an OPcode cache or var cache (APC,
XCache), call clear_cache.php entry point from your browser or execute curl http://localhost/
clear_cache.php from your command line.

Problem with entities and Doctrine cache?

After each Roadiz upgrade you should always upgrade your node-sources entity classes and upgrade database
schema.

112 Chapter 3. Developer documentation

Roadiz Documentation, Release 1.4.0

bin/roadiz generate:nsentities;
bin/roadiz orm:schema-tool:update --dump-sql --force;
bin/roadiz cache:clear -e prod;

If you are using a OPCode var cache like APC, XCache, you should purge it as Roadiz stores doctrine configura-
tion there for better performances, call clear_cache.php entry point from your browser or curl http:/
/localhost/clear_cache.php from your command line.

Running Roadiz behind a reverse proxy

If you are behind a reverse-proxy like Varnish or Nginx proxy on a Docker environment, IP addresses, domain
name and proto (https/http) could not be correctly set. So you will have to tell Roadiz to trust your proxy in order
to use X_FORWARDED_* env vars.

Add this line to your index.php and preview.php files after $request =
Request::createFromGlobals(); line.

$request = Request::createFromGlobals(); // Existing line to get request
// Trust incoming request IP as your reverse proxy for only X_FORWARDED... headers.
Request::setTrustedProxies(

[$request->server->get('REMOTE_ADDR')],
Request::HEADER_X_FORWARDED_ALL

);

Find help before posting an issue on Github

Join us on Gitter: https://gitter.im/roadiz/roadiz

3.1. Developer documentation 113

https://symfony.com/doc/3.4/deployment/proxies.html#solution-settrustedproxies
https://gitter.im/roadiz/roadiz

Roadiz Documentation, Release 1.4.0

114 Chapter 3. Developer documentation

CHAPTER 4

Extension documentation

4.1 Extension system

4.1.1 Extending Roadiz

It is time to see how to extend Roadiz! As you read in Roadiz Philosophy part, we won’t ship “plugin” or “module”
like others CMS. But you will be able to add of lot of features using the part that really matters: Themes!

Theme powered CMS

We coded the Theme system to be the core of your extending experience. You don’t need to change something
else than your theme. So you can use a versioning tool or backup easily your work which will be only at one
place.

You can add new entities. If so, don’t forget to add your Entities namespace in Roadiz config file. With theses
additional entities, you maybe will need to create a back-office entry to manage them. It’s easy! Let’s see how to.

Create your own database entities

You can create a theme with your own entities. Just add your Entities folder to the global configuration file
(app/conf/config.yml).

entities:
- "../vendor/roadiz/roadiz/src/Roadiz/Core/Entities"
- "../vendor/roadiz/models/src/Roadiz/Core/AbstractEntities"
- "gen-src/GeneratedNodeSources"
- "../themes/MyTheme/Entities"

Verify if everything is OK by checking migrations:

bin/roadiz orm:schema-tool:update --dump-sql;

If you see your entities being created and no system database erased, just apply your migration with --force. If
Doctrine send some error, you probably need to clear metadata cache:

115

Roadiz Documentation, Release 1.4.0

bin/roadiz cache:clear -e prod;

Clearing cache from command line will not empty op-code cache. Be sure to call clear_cache.php entry
point to actually clear PHP-FPM related caches. You can use an curl command if your website is accessible
from localhost:

curl http://localhost/clear_cache.php;

Add back-office entry

At first, create a controller into your theme folder, for example themes/MyTheme/AdminControllers/
AdminController.

Example:

namespace Themes\MyTheme\AdminControllers;

use Themes\Rozier\RozierApp;
use Themes\MyTheme\MyThemeApp;
use Symfony\Component\HttpFoundation\Request;

class AdminController extends RozierApp
{

public function listAction(
Request $request

) {
return $this->render(

'admin/test.html.twig',
$this->assignation,
null,
MyThemeApp::getThemeDir()

);
}

}

If you look at this exemple you can see the class extends RozierApp not your MyThemeApp class! This
will enable you to “inject” your code into Rozier Back-stage DOM and Style. But be careful to use MyThe-
meApp::getThemeDir() as your template namespace.

Now let’s have a look to your twig template file admin/test.html.twig.

{% extends '@Rozier/layout.html.twig' %}

{% block customStyles %}
<style>

/* Custom styles here */
</style>
{% endblock %}

{% block customScripts %}
<script>

/* Custom Stripts here */
</script>
{% endblock %}

{% block content %}
<section class="content-global add-test">

<header class="content-header header-test header-test-edit">
<h1 class="content-title test-add-title">{% trans %}Test admin{% endtrans

→˓%}</h1>
</header>

116 Chapter 4. Extension documentation

Roadiz Documentation, Release 1.4.0

<article class="content content-test">
<p>This page is created from MyTheme to show you how to extend backoffice

→˓features.</p>
</article>

</section>
{% endblock %}

The first line is for inheriting from Rozier base template, you can notice that we explicitly choose @Rozier
namespace.

The two next blocks are made for you to add some CSS or Javascript. For CSS, the block customStyle can
be use to link an external file with a <link> tag, the path must be something like that {{ asset('static/
css/customstyle.css', 'MyTheme') }}, or add directly some CSS with “<style>” tag. For JS, the
block customScripts work as is, just link an external JS file or write your <script> tag.

Then create your own content, do not hesitate to give a look at Rozier back-stage theme Twig files to use the
right DOM structure. For simple features, you wouldn’t have to extend JS nor CSS if you follow the same HTML
coding style.

Linking things together

Add the route in the theme route.yml file.

In this case the route will be:

adminTestPage:
Setting your path behind rz-admin will activate Firewall
path: /rz-admin/test
defaults:

_controller: Themes\MyTheme\AdminControllers\AdminController::listAction

Inject your own entries in back-stage

The last thing to do is to add your new admin entry in the back-office menu.

Go to your MyThemeApp.php main class and override setupDependencyInjection method, or create it
if it doesn’t exist.

public static function setupDependencyInjection(Container $container)
{

parent::setupDependencyInjection($container);

$container->extend('backoffice.entries', function (array $entries, $c) {

/*
* Add a customAdmin entry in your Backoffice

*/
$entries['customAdmin'] = [

'name' => 'customAdmin',
'path' => $c['urlGenerator']->generate('adminTestPage'),
'icon' => 'uk-icon-cube',
'roles' => null,
'subentries' => null

];

return $entries;
});

}

4.1. Extension system 117

Roadiz Documentation, Release 1.4.0

Do not forget to add use Pimple\Container; in your file header.

setupDependencyInjection method is called statically at boot time when Roadiz’s kernel is running all
available Themes to setup services. In the code above, you will extend backoffice.entries service which
define every buttons available in Rozier backstage main-menu.

If you want to have a category and sub-entries, just change the path at null value and create your subentries
array as described in the next example:

$entries['customAdmin'] = [
'name' => 'customAdmin',
'path' => null,
'icon' => 'uk-icon-cube',
'roles' => null,
'subentries' => [

'customAdminPage' => [
'name' => 'customAdmin page',
'path' => $c['urlGenerator']->generate('adminTestPage'),
'icon' => 'uk-icon-cube',
'roles' => null

],
// Add others if you want

]
];

You can restrict buttons to users with specific roles. Just replace 'roles' => null with 'roles' =>
array('ROLE_ACCESS_NODES'). You can even create your own roles to take full power of Roadiz extension
system.

Warning: Adding roles in backoffice.entries service will only restrict buttons dis-
play in Rozier backstage interface. To really protect your controllers from unwanted users add
$this->validateAccessForRole('ROLE_ACCESS_MY_FEATURE'); at the first line of your
back-ofice controller‘s actions. This will kick non-granted users from your custom back-office parts. Give
a look at Rozier theme controllers to see how we use it.

4.1.2 Events

Roadiz node system implements several events. So you will be able to create and inject your own event subscribers
inside Roadiz dispatcher.

To understand how the event dispatcher works, you should read the Symfony documentation at before.

Nodes events

• RZ\Roadiz\Core\Events\Node\NodeCreatedEvent::class

• RZ\Roadiz\Core\Events\Node\NodeUpdatedEvent::class

• RZ\Roadiz\Core\Events\Node\NodeDeletedEvent::class

• RZ\Roadiz\Core\Events\Node\NodeUndeletedEvent::class

• RZ\Roadiz\Core\Events\Node\NodeDuplicatedEvent::class

• RZ\Roadiz\Core\Events\Node\NodePathChangedEvent::class

• RZ\Roadiz\Core\Events\Node\NodeTaggedEvent::class: This event is triggered for tag
and un-tag action.

• RZ\Roadiz\Core\Events\Node\NodeVisibilityChangedEvent::class: This event is
triggered each time a node becomes visible or unvisible.

118 Chapter 4. Extension documentation

http://symfony.com/doc/current/components/event_dispatcher/introduction.html

Roadiz Documentation, Release 1.4.0

• RZ\Roadiz\Core\Events\Node\NodeStatusChangedEvent::class: This event is trig-
gered each time a node status changes.

Each node event object contains the current Node entity. You will get it using $event->getNode().

NodesSources events

RZ\Roadiz\Core\Events\NodesSourcesEvents

• RZ\Roadiz\Core\Events\NodesSources\NodesSourcesCreatedEvent::class

• RZ\Roadiz\Core\Events\NodesSources\NodesSourcesPreUpdatedEvent::class:
This event is dispatched BEFORE entity manager FLUSHED.

• RZ\Roadiz\Core\Events\NodesSources\NodesSourcesUpdatedEvent::class: This
event is dispatched AFTER entity manager FLUSHED.

• RZ\Roadiz\Core\Events\NodesSources\NodesSourcesDeletedEvent::class

Each node-source event object contains the current NodesSources entity. You will get it using
$event->getNodeSource().

• RZ\Roadiz\Core\Events\NodesSources\NodesSourcesIndexingEvent::class:
This event type is dispatched during Solr indexation. Your event will be
\RZ\Roadiz\Core\Events\FilterSolariumNodeSourceEvent and it will allow you to
alter or improve your Solr index according to your node-source type.

Note: You will find a simple subscriber example in Roadiz back-office theme which is called
Themes\Rozier\Events\SolariumSubscriber. This subscriber is useful to update or delete your Solr
index documents against your node-source database.

• RZ\Roadiz\Core\Events\NodesSources\NodesSourcesPathGeneratingEvent::class:
This event type is dispatched when the node-router generate a path for your node-source using {{ path()
}} Twig method or $this->get('urlGenerator')->generate() controller method. The de-
fault subscriber will generate the complete hierarchical path for any node-source using their identifier
(available url-alias or node’ name).

Tags events

• RZ\Roadiz\Core\Events\Tag\TagCreatedEvent::class

• RZ\Roadiz\Core\Events\Tag\TagUpdatedEvent::class

• RZ\Roadiz\Core\Events\Tag\TagDeletedEvent::class

Each tag event object contains the current Tag entity. You will get it using $event->getTag().

Folders events

• RZ\Roadiz\Core\Events\Folder\FolderCreatedEvent::class

• RZ\Roadiz\Core\Events\Folder\FolderUpdatedEvent::class

• RZ\Roadiz\Core\Events\Folder\FolderDeletedEvent::class

Each folder event object contains the current Folder entity. You will get it using $event->getFolder().

4.1. Extension system 119

Roadiz Documentation, Release 1.4.0

Translations events

• RZ\Roadiz\Core\Events\Translation\TranslationCreatedEvent::class

• RZ\Roadiz\Core\Events\Translation\TranslationUpdatedEvent::class

• RZ\Roadiz\Core\Events\Translation\TranslationDeletedEvent::class

Each folder event object contains the current Translation entity. You will get it using
$event->getTranslation().

UrlAlias events

• RZ\Roadiz\Core\Events\UrlAlias\UrlAliasCreatedEvent::class

• RZ\Roadiz\Core\Events\UrlAlias\UrlAliasUpdatedEvent::class

• RZ\Roadiz\Core\Events\UrlAlias\UrlAliasDeletedEvent::class

Each folder event object contains the current UrlAlias entity. You will get it using
$event->getUrlAlias().

User events

• RZ\Roadiz\Core\Events\User\UserCreatedEvent::class

• RZ\Roadiz\Core\Events\User\UserUpdatedEvent::class

• RZ\Roadiz\Core\Events\User\UserDeletedEvent::class

• RZ\Roadiz\Core\Events\User\UserDisabledEvent::class

• RZ\Roadiz\Core\Events\User\UserEnabledEvent::class

• RZ\Roadiz\Core\Events\User\UserPasswordChangedEvent::class

Each folder event object contains the current User entity. You will get it using $event->getUser().

4.1.3 Extending Solr indexation

How to index page blocks contents

If all your text content is written in block nodes instead of reachable pages, you should index them into your page
Solr documents to improve your search engine relevancy.

You can use the NodesSourcesIndexingEvent::class event to enhance your node indexing data before
it’s persisted into Solr engine (especially collection_txt field):

<?php
declare(strict_types=1);

namespace Themes\MyTheme\Event;

use GeneratedNodeSources\NSGroupBlock;
use GeneratedNodeSources\NSPage;
use Pimple\Container;
use RZ\Roadiz\Core\Entities\NodesSources;
use RZ\Roadiz\Core\Events\NodesSources\NodesSourcesIndexingEvent;
use RZ\Roadiz\Core\SearchEngine\SolariumFactoryInterface;
use RZ\Roadiz\Core\SearchEngine\SolariumNodeSource;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

final class PageIndexingEventSubscriber implements EventSubscriberInterface

120 Chapter 4. Extension documentation

Roadiz Documentation, Release 1.4.0

{
/**
* @var Container

*/
protected $container;

public function __construct(Container $container)
{

$this->container = $container;
}

/**
* @inheritDoc

*/
public static function getSubscribedEvents()
{

return [
NodesSourcesIndexingEvent::class => ['onIndexing'],

];
}

public function onIndexing(NodesSourcesIndexingEvent $event)
{

$nodeSource = $event->getNodeSource();
if ($nodeSource instanceof NSPage || $nodeSource instanceof NSGroupBlock) {

$assoc = $event->getAssociations();

/*
* Fetch every non-reachable blocks

* to gather their text content in master page document

*/
$children = $this->container['nodeSourceApi']->getBy([

'node.nodeType.reachable' => false,
'node.visible' => true,
'translation' => $nodeSource->getTranslation(),
'node.parent' => $nodeSource->getNode(),

]);

/** @var NodesSources $child */
foreach ($children as $child) {

/** @var SolariumNodeSource $solarium */
$solarium = $this->container[SolariumFactoryInterface::class]->

→˓createWithNodesSources($child);
// Fetch all fields array association AS sub-resources (i.e. do

→˓not index their title)
$childAssoc = $solarium->getFieldsAssoc(true);
$assoc['collection_txt'] = array_merge(

$assoc['collection_txt'],
$childAssoc['collection_txt']

);
}

$event->setAssociations($assoc);
}

}
}

Then register this subscriber to your event-dispatcher:

In your theme ServiceProvider...
$container->extend('dispatcher', function (EventDispatcherInterface $dispatcher,
→˓Container $c) {

$dispatcher->addSubscriber(new PageIndexingEventSubscriber($c));

4.1. Extension system 121

Roadiz Documentation, Release 1.4.0

return $dispatcher;
});

122 Chapter 4. Extension documentation

Index

A
accessDecisionManager, 106
accessDeniedHandler, 106
accessMap, 106
AdapterInterface, 107
argumentResolver, 105
assetPackages, 102
attribute, 109
authenticationManager, 106
authenticationProviderList, 106

B
backoffice.entries, 102

C
CacheProvider::class, 103
color, 108
config, 108
config.handler, 108
config.path, 108
console.commands, 103
contactFormManager, 104
contextListener, 106
cookieClearingLogoutHandler, 106
csrfTokenManager, 106
custom_form, 109
custom_form.handler, 104
custom_form_field.handler, 104

D
daoAuthenticationProvider, 106
debugbar, 103
debugbar.renderer, 103
defaultTranslation, 107
dispatcher, 102
doctrine.debugstack, 103
doctrine.entities_paths, 103
doctrine.relative_entities_paths, 103
document, 109
document.factory, 104
document.handler, 104
document.platforms, 103
document.url_generator, 104

document.viewer, 104

E
em, 103
em.config, 103
em.eventSubscribers, 103
emailManager, 104
embed_finder.dailymotion, 103
embed_finder.mixcloud, 103
embed_finder.soundcloud, 103
embed_finder.spotify, 103
embed_finder.ted, 103
embed_finder.twitch, 103
embed_finder.vimeo, 103
embed_finder.youtube, 103

F
factory.handler, 104
firewall, 106
firewallMap, 106
folder, 109
folder.handler, 104
font.handler, 104
form.extensions, 104
form.type.extensions, 104
formFactory, 104
formValidator, 104

G
group.handler, 104
groupVoter, 106

H
httpKernel, 105
httpUtils, 105

I
id, 108
interventionRequest, 102
interventionRequestConfiguration, 102
interventionRequestLogger, 102
interventionRequestSubscribers, 102
interventionRequestSupportsWebP, 102

123

Roadiz Documentation, Release 1.4.0

J
JMSSerializerSerializerBuilder, 107

K
kernel, 102

L
logger, 105
logger.handlers, 105
logger.path, 105
logger.themes, 107

M
mailer, 105
mailer.transport, 105
messagescollector, 103

N
newsletter.handler, 104
node, 108
node.handler, 104
node_type, 109
node_type.handler, 104
node_type_field.handler, 104
nodeApi, 104
NodeFactory::class, 104
nodeRouter, 105
nodes_sources, 108
nodes_sources.handler, 104
nodes_sources_base, 108
nodes_sources_default, 108
nodes_sources_documents, 108
nodes_sources_‘‘group‘‘, 108
nodeSourceApi, 104
nodesSourcesUrlCacheProvider, 103
nodeTypeApi, 104
nodeTypesBag, 103

P
passwordEncoder, 106
position, 108

R
redirectionRouter, 105
rememberMeAuthenticationProvider, 106
rememberMeCookieLifetime, 106
rememberMeCookieName, 106
rememberMeListener, 106
requestContext, 105
requestStack, 105
resolver, 105
roleHierarchy, 106
roleHierarchyVoter, 106
rolesBag, 103
Rollerworks\Component\PasswordStrength\Blacklist\BlacklistProviderInterface,

105

Rollerworks\Component\PasswordStrength\Validator\Constraints\BlacklistValidator,
105

routeCollection, 105
routeListener, 105
router, 105
RZ\Roadiz\CMS\Importers\ChainImporter, 105
RZ\Roadiz\CMS\Importers\GroupsImporter, 105
RZ\Roadiz\CMS\Importers\NodesImporter, 105
RZ\Roadiz\CMS\Importers\NodeTypesImporter, 105
RZ\Roadiz\CMS\Importers\RolesImporter, 105
RZ\Roadiz\CMS\Importers\SettingsImporter, 105
RZ\Roadiz\CMS\Importers\TagsImporter, 105

S
security.voters, 106
securityAccessListener, 106
securityAuthenticationTrustResolver, 106
securityAuthenticationUtils, 106
securityAuthorizationChecker, 106
securityTokenStorage, 106
serializer, 107
serializer.subscribers, 107
session, 106
session.pdo, 106
session.storage, 106
sessionTokenStorage, 106
setting, 109
setting_group, 109
settingsBag, 103
SolariumFactoryInterface, 107
solr, 107
solr.ready, 107
solr.search.document, 107
solr.search.nodeSource, 107
staticRouter, 105
stopwatch, 102
switchUser, 106

T
tag, 108
tag.handler, 104
tag_base, 108
tagApi, 104
TagFactory::class, 104
ThemeGenerator, 107
themeResolver, 107
timestamps, 108
tokenBasedRememberMeServices, 106
translation, 109
translation.handler, 104
translation.viewer, 104
translator, 107
translator.locale, 107
twig.cacheExtension, 107
twig.cacheFolder, 107
twig.centralTruncateExtension, 107
twig.environment, 107
twig.environment_class, 107

124 Index

Roadiz Documentation, Release 1.4.0

twig.extensions, 107
twig.filters, 107
twig.formRenderer, 107
twig.fragmentHandler, 107
twig.loaderFileSystem, 107
twig.profile, 107
twig.routingExtension, 107

U
urlGenerator, 105
user.viewer, 104
userChecker, 106
userEncoderFactory, 106
userImplementations, 106
userProvider, 106
utils.nodeNameChecker, 108
utils.uniqueNodeGenerator, 108
utils.universalDataDuplicator, 108

V
versionStrategy, 102

W
workflow.node_workflow, 108
workflow.registry, 108

Index 125

	Philosophy
	User documentation
	User documentation
	Write in Markdown
	Managing nodes
	Managing node-types
	Managing documents
	Managing users

	Developer documentation
	Developer documentation
	First steps
	Node system
	Tag system
	Attributes
	Themes
	Forms
	Services
	Services list
	Serialization
	Case studies
	Contributing
	Troubleshooting

	Extension documentation
	Extension system
	Extending Roadiz
	Events
	Extending Solr indexation

	Index

