
Roadiz Documentation
Release 2.2.1

Ambroise Maupate, Julien Blanchet

Apr 09, 2024

Contents

1 Philosophy 3

2 User documentation 5
2.1 User documentation . 5

2.1.1 Write in Markdown . 6
2.1.2 Managing nodes . 8
2.1.3 Managing node-types . 19
2.1.4 Managing documents . 24
2.1.5 Managing users . 26

3 Developer documentation 33
3.1 Developer documentation . 33

3.1.1 First steps . 33
3.1.2 Node system . 43
3.1.3 Building headless websites using API . 54
3.1.4 Tag system . 66
3.1.5 Documents system . 68
3.1.6 Attributes . 72
3.1.7 Forms . 75
3.1.8 Contributing . 85
3.1.9 Troubleshooting . 86

4 Extension documentation 87
4.1 Extension system . 87

4.1.1 Extending Roadiz . 87
4.1.2 Events . 89
4.1.3 Extending Solr indexation . 91

Index 95

i

ii

Roadiz Documentation, Release 2.2.1

Roadiz is a polymorphic CMS based on a node system that can handle many types of services. It is based on
Symfony framework, Doctrine ORM, API Platform and Twig for maximum performances and security.

Roadiz node system allows you to create your data schema and to organize your content as you want. We designed
it to break technical constraints when you create tailor-made websites architectures and layouts.

Imagine you need to display your graphic design portfolio and. . . sell some t-shirts. With Roadiz you will be able
to create your content forms from scratch and choose the right fields you need. Images and texts for your projects.
Images, texts, prices and even geolocation for your products. That’s why it’s called polymorphic.

Note: This is documentation for Roadiz v2.x, browse v1.x documentation

Contents 1

/en/v1.7.0

Roadiz Documentation, Release 2.2.1

2 Contents

CHAPTER 1

Philosophy

When discovering Roadiz back-office interface, you will notice that there aren’t any Rich text editor also called
WYSIWYG editors. We chose to promote Markdown syntax in order to focus on content hierarchy and quality
instead of content style. Our guideline is to preserve and respect the web-designers and graphic designers work.

You’ll see that we built Roadiz as web-designers and for web-designers. It will allow you to create really quickly
website prototypes using Twig templates or develop complex headless websites with the power of API Platform.

We want Roadiz to be a great tool for designers and developers to build strong web experiences together. But we
thought of editors too! Roadiz back-office theme “Rozier” has been designed to offer every back-users a great
writing and administrating experience.

3

Roadiz Documentation, Release 2.2.1

4 Chapter 1. Philosophy

CHAPTER 2

User documentation

2.1 User documentation

Note: User documentation is on the way. We invite you to send us questions on our Gitter account or to leave
some documentation suggestions on our Github repository.

First of all, you will need to connect to Roadiz’ backoffice in order to make changes to your website contents.
To connect, you just have to write /rz-admin after your website domain name, in your browser address bar.
Then you will be able to enter your username and password that you chose during Roadiz installation or that you
received by email.

Here you can choose to keep your connection active for a couple of days, if your browser accepts cookies.

5

https://gitter.im/roadiz/roadiz
https://github.com/roadiz/docs/issues

Roadiz Documentation, Release 2.2.1

If you forgot your credentials, the Forgot password? section will ask you an email to send you a password reset
link.

Table of contents

2.1.1 Write in Markdown
Markdown is a lightweight markup language with plain text formatting syntax designed so that it can
be converted to HTML and many other formats using a tool by the same name. [. . .] The key design
goal is readability – that the language be readable as-is, without looking like it has been marked up
with tags or formatting instructions, unlike text formatted with a markup language, such as Rich Text
Format (RTF) or HTML, which have obvious tags and formatting instructions.

—Wikipedia article — https://en.wikipedia.org/wiki/Markdown

Titles

Add two hashtag # or more according to your title importance level. Backoffice shortcut buttons allow to
directly insert your titles marks before your selected text. Make sure to leave a blank line before each new title
you write.

Architecture
Modern architecture

Be careful not to use only one hashtag to create a first-level title as this is usually used for pages main title.

Alternate syntax

Main title and second level titles can be written using = and - as underline characters.

Architecture
============

Modern architecture

Bold

Insert two stars * before and after your text to set in bold. Backoffice shortcut button allows to insert directly
the 4 characters around your selected text.

This is a **bold text.** And a normal one.

Be careful not to leave whitespaces inside your stars group (in the same way you do with parenthesis) otherwise
your text won’t be styled.

Italic

Insert one star * before and after your text to set in italic. Backoffice shortcut button allows to insert directly
the 2 characters around your selected text.

This is an *italic text.* And a normal one.

Bold and italic marks can of course be combined using 3 stars before and after your selected text.

What if * character is already in use

Bold and italic markup can be performed using _ (underscore) character too if you actually need to write a star
character in your text.

6 Chapter 2. User documentation

https://en.wikipedia.org/wiki/Markdown

Roadiz Documentation, Release 2.2.1

A __3* Bed & Breakfast__ has just opened its doors in middletown.

Strike-through

Insert two tildes ~ before and after your text to strike-through.

This is ~~striked-through text~~.

Ordered and unordered lists

Insert a star * or a dash - followed by a single whitespace for each of your list item. One item per line. Leave
a blank line before and after your list. For ordered list, use a digit followed by a dot and a whitespace instead.

* A line
- An other line

* A unknown line

1. The first item
2. The second item
3. The third item

If you need to break an item into several lines, you’ll need to use the line-break markup.

Nested list

You can insert a second/third/. . . level for your list, just by leaving four spaces before your new list-item mark.

- A list item
- A sub-item
- A second sub-item

1. An ordered sub-sub-item
2. The second sub-sub-item

New paragraph and line-break

A simple line-break is always ignored by Markdown language because it makes a difference between a paragraph
and a line-break. To simply create a line-break without creating a new paragraph, leave at least 3 spaces at the
end of your text line then go to a new line.

Address:<space><space><space>
26 rue Burdeau<space><space><space>
69001 Lyon<space><space><space>
France

To create a new paragraph, always leave a blank line between your text blocks. Any additional blank line will
be ignored.

Nullam quis risus eget urna mollis ornare vel eu leo.
Cras justo odio, dapibus ac facilisis in, egestas eget quam.

Aenean eu leo quam. Pellentesque ornare sem lacinia
quam venenatis vestibulum.

According to your website design (CSS), new paragraphs may have no visual margins between them. Inserting
more than one blank line won’t add any additional visual space as Markdown ignores it.

Hypertext links

Write link label between braces immediately followed by the URL between parenthesis. For external links
do not forget protocol prefix http:// or https://.

2.1. User documentation 7

Roadiz Documentation, Release 2.2.1

[My link](http://www.google.com)

To create a internal link, just use relative notation:

[Contact us](/page/contact-us)

Then, for an email link, use mailto: prefix:

[John Doe](mailto:jdoe@example.com)

A link title can be added by inserting it before ending parenthesis wrapped in quotes.

[My link](http://www.google.com "Link to Google website")

Block quotes

Insert a > sign before each new paragraph and a space to wrap your text in a quote block. You can then use all
other Markdown symbols inside your quote.

> ### Donec ullamcorper nulla non metus auctor fringilla.
> Aenean lacinia **bibendum** nulla sed consectetur.
> Vestibulum id ligula porta felis euismod semper.

Images

Images use the link syntax with an exclamation mark prefix !. For external images do not forget to write full
URL with protocol http:// or https://.

![A cat](/files/cat.jpg)

![A cat from an other website](https://www.example.com/images/cat.jpg)

Be careful, images will be displayed as is, unless your webdesigner planned to adapt image size coming from
Markdown fields using CSS. As links, an external image may break if its owner deletes the original image. Make
sure to host critical images directly on your website and to use relative URL.

Footnotes

Footnotes are not supported with basic Markdown syntax, but the Markdown Extra one. So before using them,
make sure your webdesigner used the right Markdown parser in your theme.

Praesent commodo cursus magna[^note], Sed posuere consectetur est at
lobortis. Vel scelerisque nisl consectetur et[^othernote].

[^note]: This a footnote
[^othernote]: This a second footnote

Markdown will automatically generate anchor links between your footnote and its reference. It will automatically
use numbers as footnote reference labels, so you don’t have to bother to write numbers yourself but easy-to-
remember markers labels.

2.1.2 Managing nodes
Nodes are the most important part of Roadiz CMS. They are your content which can be shaped as you want
according to your node-types definitions. A node can be a blog-post, a content page, a photo gallery, even a shop
product. This is why we called it “Node”, it’s an abstract data container interconnected with other node in a tree.

Node-tree navigation

8 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

Node tree

Simple node-tree after installing Roadiz with Default theme.

Contextual menu for home node.

2.1. User documentation 9

Roadiz Documentation, Release 2.2.1

Each node has a place in your website, that’s why we chose to arrange your content in a tree-shaped way. It’s
intuitive and it works the same as your computer files.

• To edit a node’ content, simply click on it.

• To move a node across your tree, drag & drop using its handle (round or rombus shape). You can drop a
node after or before an other one. You can also drop inside just by moving your mouse a bit on the right,
you should see the node shadow to shift right.

• Other actions are available from each node contextual menu. Right click on the node or click on the arrow
at the right when you pass your mouse over.

Contextual menu actions

• Add child node: to create a content inside the current node.

• Edit node: links to the current node “edit content” page.

• Move to first position: to move a node at the first position inside its parent node.

• Move to last position: basically the same for the last position.

• Delete node: to move current node to the trashcan. A confirmation page will be prompt before really
deleting a node.

• Hide/Show: Change a node’ visibility. A hidden node won’t be displayed in Urls and your website, even if
you are an administrator.

10 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

• Publish/Unpublish: Change a node’ publication status. Unpublished nodes are not visible to anonymous
visitors, but visible for back-office users using ?_preview=1 query parameter.

• Publish offspring: Publish a node and all its children nodes recursively.

• Duplicate: Copy all current node’ content and relationships into a new node.

Creating a node

Add buttons

“Add node” button located at the top of your node-tree.

“Add a child node” button, which is located at the top of each node’ contextual menu.

To add a blank node to your node-tree, you will need to choose your location. In Roadiz you can add a content
at the root of your tree or choose a “parent-node”. In both cases you will be asked to choose a node-type and a
node-name before creating your node.

• Node name is the global identifier for your node. It must be unique and won’t change from one translation
to an other. It can be changed later except if your developer locked it up. Node name is usually used to build
your pages URL.

• Node-type defines what fields will be available in your content. Choose well as you won’t be able to change
it later, you ’ll have to delete and recreate an other node.

Edit an existing node

Node edition page is composed in several tabs.

• Node content

• Node parameters

• Tags

• SEO

• Tree, if your node is set up as a stack

2.1. User documentation 11

Roadiz Documentation, Release 2.2.1

Node content

Contents tab is basically the main part where you will edit your node specific data, using node-type fields such as
text fields, or documents fields, etc.

This tab will display different content over translations depending on which fields are marked as universal or not.

12 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

Node parameters

Parameters are global data such as your node name. They are used for managing your node visibility according to
each user role and node back-office’ settings. This section should not be used so often as parameters will be set
once by your developer.

This tab will display the same content over translations.

Side actions and parameters

Additional parameters are available on the right action-menu. These parameters are node-wide, they will apply on
each node translations.

2.1. User documentation 13

Roadiz Documentation, Release 2.2.1

• Visibility: Hide or show current node (according to your theme)

• Hide children: Switch current node to a stack, children nodes won’t appear in the global Node-Tree any-
more. You will be able to add Stack type buttons in the node parameters tab.

• Lock status: Prevent users to delete current node or rename it. You should switch it on if your rely on some
nodes in your themes.

• Forbid children: Prevent users to create children nodes.

14 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

Tags

This tab will display the same content over translations.

2.1. User documentation 15

Roadiz Documentation, Release 2.2.1

SEO

This tab will display different content over translations.

Tree

When a node is defined as a stack, Tree becomes its default view. You can set the default ordering in the Edit tab.
And node-types set as publishable will display their publication date before its name.

16 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

Tree view becomes very interesting if you have many many children nodes, when you have blog posts or portfolio
projects for example.

Then you can add stack type in Edit tab to make some handy quick-add buttons to this view.

2.1. User documentation 17

Roadiz Documentation, Release 2.2.1

Nodes publication system

During its lifecycle, every nodes can have a different publication status. When you create a new content, it will be
automatically set as Draft by Roadiz so that you can edit it without bothering your visitors and sharing unfinished
work.

Available statuses:

• Draft: First status for new nodes

• Pending validation: It’s a medium status for user that do not have permission to publish nodes

• Published: That’s the most important status, it will set the green light to your visitor to view your content

• Archived: When you don’t want to publish a node but you don’t want to delete it either

• Deleted: It’s the last status for your nodes. Before emptying your node trashcan, every content will wait
with this status.

To improve status visibility, draft and pending nodes have a rhombus shape and published nodes have a circle
shape.

Preview unpublished nodes

Unpublished nodes are not viewable for anonymous visitors, Roadiz allows backend users to preview them adding
a dedicated query parameter called ?_preview=1 in your website URLs. Using a different URL than your
public website is very important as it could lead to errors or to expose unpublished content if your website is
hosted behind a reverse proxy cache like Varnish.

For example, if your my-news page is not published yet, connecting to http://mywebsite.com/my-news
will lead to a 404 page for your anonymous visitors, as well as you too. If you want to preview it, you’ll have
to connect to http://mywebsite.com/my-news?_preview=1. This URL will only allow authenticated
backend users, other people will be denied.

18 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

2.1.3 Managing node-types
This is a simple guide on how to create and manage nodes using Roadiz CLI, add and remove node fields, or even
how to import nodes.

First and foremost, you need to create a new node-type before creating any kind of node.

If you want to know more about what a node-type is, please visit the other section of the developer documentation.

When working with Roadiz in the back-office, you can easily manage node-types via the Construction icon in the
toolbar.

Add node-type

Once you have landed on the Node-Types page (https://mywebsite.com/rz-admin/node-types), you can create node-
types by clicking on Add a node-type.

Note: You can export and import a node-type if you have a .json file. See Other action for more information.

2.1. User documentation 19

Roadiz Documentation, Release 2.2.1

Upon filling the two mandatory settings Name (that developers will use) and Display Name (that back-office users
will see), you are now ready to create your first node type.

Warning: Be careful when you name your node-type though, Name field can’t be changed once the node-type
is created. See Delete node-type section to know how to delete a node-type.

Other options (Visible, Newsletter node-type, Node-type hides its nodes and customizable color) aren’t required
and can always be altered later on.

You have now created your first node-type! It now appears on the node-type page along other node-types and you
can now manage its fields.

Delete node-type

Made a typo when creating a node-type? No longer in need of a node-type ? You can delete it by simply clicking
the trashcan icon on the Node Types page (https://mywebsite.com/rz-admin/node-types).

20 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

Adding node-type field

To add fields to your newly-created node-type, click the Manage node-type fields icon.

Then click on ‘Add a node-type field’ button.

Fill in the form to create a new field :

• Name: what developers will use

• Label: what back-office users will see

• Type: single choice option that will define the content (basic text, markdown text, documents, email, number,
single or multiple choice, children nodes etc.)

• Description, Group name, Visible, Indexed, Default values, Min length, Max length (optional)

Note: Default values is an interesting field as you can specify what kind of node-types that can be linked to this
node-type. You can also use it as a filter in the explorer, and only show those default values.

2.1. User documentation 21

Roadiz Documentation, Release 2.2.1

Other actions

From one website to another, you can export node-types as .json files.

An .json file should look like this when you open it in any editor:

{
"name": "Page",
"displayName": "Page",
"visible": true,
"publishable": false,

22 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

"reachable": true,
"newsletterType": false,
"hidingNodes": false,
"color": "#000000",
"fields": [

{
"position": 1.0,
"name": "content",
"label": "Content",
"type": 4,
"expanded": false,
"nodeTypeName": "Page",
"universal": false,
"indexed": false,
"visible": true

},
{

"position": 2.0,
"name": "children",
"label": "N\u0153uds enfants",
"type": 16,
"expanded": false,
"nodeTypeName": "Page",
"universal": false,
"indexed": false,
"visible": true

},
{

"position": 3.0,
"name": "header_image",
"label": "Header image",
"type": 9,
"expanded": false,
"nodeTypeName": "Page",
"universal": false,
"indexed": false,
"visible": true

},
{

"position": 4.0,
"name": "pictures",
"label": "Pictures",
"type": 9,
"expanded": false,
"nodeTypeName": "Page",
"universal": false,
"indexed": false,
"visible": true

}
],
"defaultTtl": 0

}

Notice the four fields that have been added to this Page node-type.

You can write an .json file yourself if you feel like it, but it is probably easier to simply export node-types from
existing website, then import it on your new website. It can be easily done by clicking on Import node-type button,
then selecting it via your explorer.

2.1. User documentation 23

Roadiz Documentation, Release 2.2.1

You are close to fully master Roadiz back-office powers! Keep referring to this documentation if you have any
problem, and let us know if any information goes missing.

2.1.4 Managing documents
You can manage documents via the Document icon in the toolbar. You can either upload, embed, randomly
downloaded documents, and even have a look at unused documents in your website.

Upload document

Uploading a document has never been this easy: just drag and drop the document in the designated area.

24 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

When you upload files, Roadiz will try to reduce any image larger than 2500 pixels (width or height) in order to
ease up further transformations on it. The CMS will always keep a raw version of your uploaded document if you
decide to increase this limit over 2500 pixels. Keep in mind that Roadiz won’t be able to optimize your image to a
better format: for example if you uploaded a PNG image containing no transparent area, the CMS won’t convert
it to JPEG format and you will end up with a heavy file even if you resize it.

• Photographs, complex images with no transparency: use JPEG

• Logos, icons, complex images with transparency: use PNG

Using an image optimizer (such as tinyjpg, kraken.io, jpgoptim, . . .) before uploading onto Roadiz is useless
because, the CMS will lose these optimizations when it processes transformations (crop, resizing, contrast and
quality).

On the other hand, if your website has been developed with picture support, Roadiz will be able to serve any
images in the new WEBP format which is 30% lighter than JPEG and supports transparency (alpha channel).
So any user browsing your website with a Chrome, Firefox or Edge will see only WEBP images and will save
up minimum 30% of bandwidth usage. In the near future, AVIF image format will be more supported by major
browsers, and Roadiz will be able to generate optimized image with this format too.

Embed document

Here is the magical part of the Documents section. You can have embedded documents from YouTube, Sound-
Cloud, Vimeo, Mixcloud, Spotify, Twitch, TED and Dailymotion, then use them as if they were images in your
content blocks.

Random document

Random is a cool feature that allows to download random documents to your website from Splashbase.

2.1. User documentation 25

Roadiz Documentation, Release 2.2.1

Unused document

Clicking Unused document allows you to gather every unused documents on your website, so you can clean your
database and get rid of useless documents.

2.1.5 Managing users
This is a simple guide on how to create and manage users using Roadiz CLI.

There are two ways of adding users, via the back-office and in command-line, both will be displayed in each
section.

When working with Roadiz in the back-office, you can easily manage users via the User system icon in the toolbar.

26 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

Create a new user

You can add users simply by clicking Add an user button.

2.1. User documentation 27

Roadiz Documentation, Release 2.2.1

If you create an user without specifying its password, an email with a password reset link will sent. Make sure
that you entered the right email and that your Roadiz website has a mailer configured. New user will be locked
unless he or she resets its password first.

Fig. 2.1: A new user without password will stay locked until he or she resets its password.

The command-line bin/console users:create loginname starts a new interactive user creation ses-
sion. You will create a new user with login and email, you can also choose if it’s a backend user and if it’s a
superadmin.

Delete user

You can remove users by clicking the trashcan icon.

28 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

The command bin/console users:delete loginname delete the user “loginname”.

Adding role

You can edit a users profile the same way you edit a node-type. You can add roles in the Roles tab.

If you want to add ROLE_SUPERADMIN role to “test” user, it would look like this in command-line:

bin/console users:roles --add loginname
You will be prompted to choose the ROLE with auto-complete feature.

Other action

It is possible to enable or disable users with users:enable or users:disable command. If a user doesn’t
remember his password, you can regenerate it with the users:password command. For more information and
more actions, we invite you to check available commands with:

bin/console list users

Enable SSO for back-office users

Roadiz is compatible with any OpenID single sign-on system (such as Google, Exchange, . . .) and can be
configured to allow your company users to login to your back-office with several ROLES.

First, make sure to generate and gather the following information from your OpenID provider:

• OpenID client ID

• OpenID client secret

• OpenID auto-discovery URL (i.e. for Google GSuite user https://accounts.google.com/.well-known/
openid-configuration)

2.1. User documentation 29

https://accounts.google.com/.well-known/openid-configuration
https://accounts.google.com/.well-known/openid-configuration

Roadiz Documentation, Release 2.2.1

Then you should decide:

• What roles (comma separated) you want to be automatically granted to users connected with your SSO.

• What domain name to restrict users from. This is very important for Google Suite users because the auto-
discovery is the same for everybody. You may not want to allow every Google Suite users to access your
back-office .

• A button label for your back-office login page.

config/packages/roadiz_rozier.yaml
roadiz_rozier:

open_id:
Verify User info in JWT at each login
verify_user_info: false
Standard OpenID autodiscovery URL, required to enable OpenId login in

→˓Roadiz CMS.
discovery_url: '%env(string:OPEN_ID_DISCOVERY_URL)%'
For public identity providers (such as Google), restrict users emails by

→˓their domain.
hosted_domain: '%env(string:OPEN_ID_HOSTED_DOMAIN)%'
OpenID identity provider OAuth2 client ID
oauth_client_id: '%env(string:OPEN_ID_CLIENT_ID)%'
OpenID identity provider OAuth2 client secret
oauth_client_secret: '%env(string:OPEN_ID_CLIENT_SECRET)%'
granted_roles:

- ROLE_USER
- ROLE_BACKEND_USER
- ROLE_SUPERADMIN

Fill all your gathered information to the right Roadiz dotenv variables.

OPEN_ID_DISCOVERY_URL=https://accounts.google.com/.well-known/openid-configuration
OPEN_ID_HOSTED_DOMAIN=my-google-workspace-domain.com
OPEN_ID_CLIENT_ID=xxxxxxx
OPEN_ID_CLIENT_SECRET=xxxxxxx

Then, if your parameter are correct you should see your SSO connect button on Roadiz back-office login page.
Pay attention that if your SSO users do not have sufficient permissions they may have a 403 error after being
redirected from SSO flow.

30 Chapter 2. User documentation

Roadiz Documentation, Release 2.2.1

Note: Google Suite OpenID implementation is described at https://developers.google.com/identity/protocols/
oauth2/openid-connect#discovery

First, create a new OAuth2 application on https://console.cloud.google.com/ and follow instructions at https://
developers.google.com/identity/protocols/oauth2/openid-connect#getcredentials

2.1. User documentation 31

https://developers.google.com/identity/protocols/oauth2/openid-connect#discovery
https://developers.google.com/identity/protocols/oauth2/openid-connect#discovery
https://console.cloud.google.com/
https://developers.google.com/identity/protocols/oauth2/openid-connect#getcredentials
https://developers.google.com/identity/protocols/oauth2/openid-connect#getcredentials

Roadiz Documentation, Release 2.2.1

32 Chapter 2. User documentation

CHAPTER 3

Developer documentation

3.1 Developer documentation

3.1.1 First steps

Requirements

Roadiz is a Symfony application running with PHP. You can follow regular Symfony requirements to optimize
your local or production setup. Roadiz requires an HTTP server for static assets and SSH access with out/ingoing
allowed connections. Here is a short summary of mandatory elements before installing Roadiz:

• Nginx or Apache, with a dedicated virtual host as described below.

• PHP 8.1+ required, 8.2 recommended

• Install theses PHP extensions (which are installed and enabled by default in most PHP installations): JSON,
Intl, cURL, MBString, Ctype, iconv, PCRE, Session, Zip, SimpleXML, and Tokenizer;

• Your php.ini needs to have the date.timezone setting

• You need to have at least version 2.6.21 of libxml

• PHP OPcache

• php.ini recommended settings

– short_open_tag = Off

– magic_quotes_gpc = Off

– register_globals = Off

– session.auto_start = Off

• MariaDB 10.5.2+ or MySQL 8.0+ database with JSON_* functions support

• Install Composer, which is used to install PHP packages.

• Git

Roadiz is a Symfony application

Roadiz is not meant to be deployed directly on a production server right out-of-the-box, it is a Symfony application
that you must configure and customize on your development environment then commit your own project repository

33

https://symfony.com/doc/5.4/setup.html#technical-requirements
https://getcomposer.org/download/

Roadiz Documentation, Release 2.2.1

configuration, migrations. Then you will be able to deploy it using your preferred method (SFTP / SSH / Git /
Docker). Remember that as you would do with any Symfony app, you’ll have to clear cache, run migrations and
other stuff each time you deploy to a new environment. This may require a SSH access to your production env or
building a Docker image with a custom entrypoint script.

Using Docker as a development and production environment

Roadiz and Symfony development and production environments heavily rely on Docker and docker-compose
because it eases up development and deployments stages using tools such as Gitlab or Github Actions. We recom-
mend creating Docker images containing all your project sources and dependencies.

You can use our official Docker images with PHP-FPM and Nginx already setup for you. We recommend that
you create your own Docker image based on this official one.

• https://hub.docker.com/r/roadiz/php82-fpm-alpine PHP-FPM 8.2 container ready for Roadiz and Symfony
apps. Used for main application, async workers and cron jobs.

• https://hub.docker.com/r/roadiz/nginx-alpine Nginx container ready for Roadiz and Symfony apps. Used
for static assets and proxying to PHP-FPM container.

docker-compose is meant to be used on the host machine (especially on Windows and macOs hosts). Docker
is not mandatory if you prefer to install PHP and a web server directly on your host, just follow official Symfony
instructions : https://symfony.com/doc/current/setup.html#technical-requirements

One container per process

Since Roadiz v2.1, we recommend separating processes into different docker containers. This allows you to scale
each process independently. For example, you can have multiple PHP-FPM containers running your application,
but only one Nginx container serving static assets. You can also have multiple PHP-FPM containers running your
application, but only one Redis container for your cache. This allows you to scale each process independently.

Create a new Roadiz project

For new projects Roadiz can be easily setup using create-project command and our Skeleton.

Create a new Roadiz project
composer create-project roadiz/skeleton my-website
cd my-website
Create a local Dotenv to store your secrets
cp .env .env.local
Edit your docker-compose parameter in .env to
fit your development environment (OS, UID).
.env file will be tracked by Git
#
Initialize your Docker environment
docker-compose build
docker-compose up -d --force-recreate

Warning: Roadiz and Symfony development and production environments heavily rely on Docker and
docker-compose. We recommend you to learn these awesome tools if you’re not using them yet. You still can
use Roadiz without Docker, but you will have to install and configure a PHP environment, MySQL database,
and a web server. If you are not using docker or docker-compose, just ignore docker-compose exec -u
www-data app prefix in the following commands.

Note: Keep in mind that Roadiz v2 is a complete rewrite to become a true Symfony Bundle, it is true a Symfony
app and behaves like that. Roadiz v2 is meant to be used as a headless CMS with API Platform. But you still can
use Controllers and Twig templates, but there is no more theme logic, just Symfony Bundles and your own code
(in ./src folder).

34 Chapter 3. Developer documentation

https://docs.docker.com/get-started/
https://docs.docker.com/compose/
https://hub.docker.com/r/roadiz/php82-fpm-alpine
https://hub.docker.com/r/roadiz/php82-fpm-alpine
https://hub.docker.com/r/roadiz/nginx-alpine
https://symfony.com/doc/current/setup.html#technical-requirements
https://docs.docker.com/get-started/
https://docs.docker.com/compose/

Roadiz Documentation, Release 2.2.1

Composer will prompt you if you want to can versioning history. Choose the default answer no as we definitely
want to replace roadiz/skeleton Git with our own versioning. Then you will be able to customize every files in
your projects and save them using Git, not only your theme. Of course we added a default .gitignore file to
prevent your configuration setting and entry points to be committed in your Git history. That way you can have
different configuration on development and on your production server without bothering about merge conflicts.

Generate JWT private and public keys

When using composer create-project command, you should have JWT secret and certificate automatically gener-
ated. If not, you can generate them using the following commands:

Generate Symfony secrets
docker-compose exec -u www-data app bin/console secrets:generate-keys;
Set a random passphrase for Application secret and JWT keys
docker-compose exec -u www-data app bin/console secrets:set APP_SECRET --random;
docker-compose exec -u www-data app bin/console secrets:set JWT_PASSPHRASE --
→˓random;
Use built-in command to generate your key pair
docker-compose exec -u www-data app bin/console lexik:jwt:generate-keypair;

Install database

Create and migrate Roadiz database schema
docker-compose exec -u www-data app bin/console doctrine:migrations:migrate
Migrate any existing data types
docker-compose exec -u www-data app bin/console app:migrate
Install base Roadiz fixtures, default translation, roles and settings
docker-compose exec -u www-data app bin/console install
Stop workers to force restart them
docker compose exec -u www-data app php bin/console messenger:stop-workers
Clear cache
docker-compose exec -u www-data app bin/console cache:clear
Create your admin account
docker-compose exec -u www-data app bin/console users:create -m username@roadiz.io
→˓-b -s username

Then connect to http://localhost:${YOUR_PORT}/rz-admin to access your freshly-created Roadiz
backoffice.

Note: If you setup Traefik on your local environment, you can reach your Roadiz app using your domain.
test test domain name without specifying a non-default port. You have to change HOSTNAME dot-env variable
and change your local DNS to point domain.test to 127.0.0.1. The easiest way is to add 127.0.0.1
domain.test to your /etc/hosts file.

Manual configuration

Roadiz is a full-stack Symfony application. It follows its configuration scheme as described in https://symfony.
com/doc/5.4/configuration.html

Choose your inheritance model

Roadiz main feature is all about its polymorphic document model which is mapped on a relational database. This
requires a challenging structure which can be lead to some performance bottlenecks when dealing with more than
20-30 node-types. So we made the data inheritance model configurable to allow switching to single_table scheme
which will be more performant if you need lots of node-types. However Single class model will drop support for
fields with the same name but not the same type because all node-type fields will be created in the same SQL
table.

3.1. Developer documentation 35

https://doc.traefik.io/traefik/
https://symfony.com/doc/5.4/configuration.html
https://symfony.com/doc/5.4/configuration.html
https://www.doctrine-project.org/projects/doctrine-orm/en/2.7/reference/inheritance-mapping.html#single-table-inheritance

Roadiz Documentation, Release 2.2.1

If you really need to mix field types, we advise you to keep the original joined table inheritance type which creates
a dedicated SQL table for each node-type. Joined table inheritance can be very useful with a small number of
node-type (max. 20) and very different fields. But its main drawback is that Roadiz needs to LEFT JOIN every
node-type table for each node-source query, unless you specify one node-type criteria.

You can configure Doctrine strategy for NodesSources inheritance classes in config/packages/
roadiz_core.yaml:

config/packages/roadiz_core.yaml
roadiz_core:

inheritance:
type: joined
type: single_table

• Joined class inheritance: joined

• Single table inheritance: single_table

Warning: If you change this setting after creating content in your website, all node-sources data will be lost.

Themes (compatibility with v1.x)

Themes are statically registered into Roadiz configuration for better performances and delaying database usage.
You have to register any front-end theme in your config/packages/roadiz_compat.yaml file. Theme
priority is not handled here but in each of your themes by overriding static $priority value;

config/packages/roadiz_compat.yaml
roadiz_compat:

themes:
-

classname: \Themes\DefaultTheme\DefaultThemeApp
hostname: '*'
routePrefix: ''

-
classname: \Themes\FooBarTheme\FooBarThemeApp
hostname: 'foobar.test'
routePrefix: ''

You can define hostname specific themes and add a route-prefix for your routing. Defaults values are '*' for the
hostname and '' (empty string) for the route-prefix.

Warning: No theme configuration will lead into a 404 error on your website home page. But you will still
have access to the back-office which is now hard-registered into Roadiz configuration.

Solr endpoint

Roadiz can use an Apache Solr search-engine to index nodes-sources. Add this to your con-
fig/packages/roadiz_core.yaml to link your CMS to your Solr server:

config/packages/roadiz_core.yaml
roadiz_core:

solr:
endpoint:

localhost:
host: "localhost"
port: "8983"
path: "/"
core: "mycore"
timeout: 3

36 Chapter 3. Developer documentation

https://www.doctrine-project.org/projects/doctrine-orm/en/2.7/reference/inheritance-mapping.html#class-table-inheritance

Roadiz Documentation, Release 2.2.1

username: ""
password: ""

Roadiz CLI command can easily handle Solr index. Just type ./bin/console solr:check to get more
information.

Reverse proxy cache invalidation

Roadiz can request cache invalidation to external and internal cache proxies such as internal Symfony AppCache
or a Varnish instance. If configured, Roadiz will create a BAN request to each configured proxy when user clears
back-office caches, and it will create a PURGE request on each node-source update event using first reachable
node-source URL.

config/packages/roadiz_core.yaml
roadiz_core:

reverseProxyCache:
frontend:

default:
host: '%env(string:VARNISH_HOST)%'
domainName: '%env(string:VARNISH_DOMAIN)%'

Note: Make sure you configured your external reverse proxy in order to receive and handle BAN and PURGE
HTTP requests.

With API Platform you also need to configure http_cache invalidation section:

config/packages/api_platform.yaml
api_platform:

http_cache:
invalidation:

enabled: true
varnish_urls: ['%env(VARNISH_URL)%']

Cloudflare proxy cache

If you are using Cloudflare as a reverse proxy cache, you can configure Roadiz to send requests to Cloudflare to
purge all items or files (when editing a node-source). You need to gather following information:

• Cloudflare zone identifier

• Cloudflare API credentials (Bearer token or email + auth-key)

Then you can configure Roadiz with Bearer token:

config/packages/roadiz_core.yaml
roadiz_core:

reverseProxyCache:
frontend: []
cloudflare:

zone: cloudflare-zone
bearer: ~

Or with your Email and AuthKey:

config/packages/roadiz_core.yaml
roadiz_core:

reverseProxyCache:
frontend: []
cloudflare:

zone: cloudflare-zone

3.1. Developer documentation 37

https://github.com/roadiz/roadiz/blob/develop/samples/varnish_default.vcl

Roadiz Documentation, Release 2.2.1

email: ~
key: ~

Note: Roadiz uses Purge all files and Purge Files by URL entry points: https://api.cloudflare.com/
#zone-purge-all-files which are available on all Cloudflare plans.

Entities paths

Roadiz uses Doctrine to map object entities to database tables.

config/packages/doctrine.yaml
doctrine:

orm:
auto_generate_proxy_classes: true
default_entity_manager: default
entity_managers:

Put `logger` entity manager first to select it as default for Log
→˓entity

logger:
naming_strategy: doctrine.orm.naming_strategy.underscore_number_

→˓aware
mappings:

Just sharding EM to avoid having Logs in default EM
and flushing bad entities when storing log entries.
RoadizCoreLogger:

is_bundle: false
type: attribute
dir: '%kernel.project_dir%/vendor/roadiz/core-bundle/src/

→˓Logger/Entity'
prefix: 'RZ\Roadiz\CoreBundle\Logger\Entity'
alias: RoadizCoreLogger

default:
dql:

string_functions:
JSON_CONTAINS:

→˓Scienta\DoctrineJsonFunctions\Query\AST\Functions\Mysql\JsonContains
naming_strategy: doctrine.orm.naming_strategy.underscore_number_

→˓aware
auto_mapping: true
mappings:

Keep RoadizCoreLogger to avoid creating different
→˓migrations since we are using

the same database for both entity managers. Just sharding
→˓EM to avoid

having Logs in default EM and flushing bad entities when
→˓storing log entries.

RoadizCoreLogger:
is_bundle: false
type: attribute
dir: '%kernel.project_dir%/vendor/roadiz/core-bundle/src/

→˓Logger/Entity'
prefix: 'RZ\Roadiz\CoreBundle\Logger\Entity'
alias: RoadizCoreLogger

RoadizCoreBundle:
is_bundle: true
type: attribute
dir: 'src/Entity'
prefix: 'RZ\Roadiz\CoreBundle\Entity'
alias: RoadizCoreBundle

RZ\Roadiz\Core:

38 Chapter 3. Developer documentation

https://api.cloudflare.com/#zone-purge-all-files
https://api.cloudflare.com/#zone-purge-all-files

Roadiz Documentation, Release 2.2.1

is_bundle: false
type: attribute
dir: '%kernel.project_dir%/lib/Models/src/Core/

→˓AbstractEntities'
prefix: 'RZ\Roadiz\Core\AbstractEntities'
alias: AbstractEntities

App\GeneratedEntity:
is_bundle: false
type: attribute
dir: '%kernel.project_dir%/src/GeneratedEntity'
prefix: 'App\GeneratedEntity'
alias: App\GeneratedEntity

App:
is_bundle: false
type: attribute
dir: '%kernel.project_dir%/src/Entity'
prefix: 'App\Entity'
alias: App

gedmo_loggable:
type: attribute
prefix: Gedmo\Loggable\Entity\MappedSuperclass
dir: "%kernel.project_dir%/vendor/gedmo/doctrine-

→˓extensions/src/Loggable/Entity/MappedSuperclass"
alias: GedmoLoggableMappedSuperclass
is_bundle: false

Use type: attribute or type: annotation according to your Doctrine mapping type.

Configure mailer

Roadiz uses Symfony Mailer to send emails.

https://symfony.com/doc/5.4/mailer.html#transport-setup

Note: Pay attention that many external SMTP services (Mandrill, Mailjet. . .) only accept email from validated
domains. So make sure that your application uses a known From: email sender not to be blacklisted or blocked
by these services. If you need your emails to be replied to an anonymous address, use ReplyTo: header instead.

Images processing

Roadiz use Intervention Request Bundle to automatically create a lower quality version of your image if they are
too big and offer on-the-fly image resizing and optimizing.

config/packages/rz_intervention_request.yaml
parameters:

env(IR_DEFAULT_QUALITY): '90'
env(IR_MAX_PIXEL_SIZE): '1920'
ir_default_quality: '%env(int:IR_DEFAULT_QUALITY)%'
ir_max_pixel_size: '%env(int:IR_MAX_PIXEL_SIZE)%'

rz_intervention_request:
driver: 'gd'
default_quality: '%ir_default_quality%'
max_pixel_size: '%ir_max_pixel_size%'
cache_path: "%kernel.project_dir%/public/assets"
files_path: "%kernel.project_dir%/public/files"
jpegoptim_path: /usr/bin/jpegoptim
pngquant_path: /usr/bin/pngquant
subscribers: []

3.1. Developer documentation 39

https://symfony.com/doc/5.4/mailer.html#transport-setup
https://github.com/rezozero/intervention-request-bundle

Roadiz Documentation, Release 2.2.1

Additional Intervention Request subscribers

Any Intervention Request subscriber can be added to configuration with its classname and its constructor
arguments. Here is an example with WatermarkListener which will print some text on all your images.

rz_intervention_request:
List additional Intervention Request subscribers
subscribers:

- class: "AM\\InterventionRequest\\Listener\\WatermarkListener"
args:

- 'Copyright 2017'
- 3
- 50
- "#FF0000"

Use kraken.io to reduce drastically image sizes

Since you can add Intervention Request subscribers, we created a useful one that sends every images to kraken.io
services to shrink them. Once you’ve configured it, do not forget to empty your caches and image caches to see
changes.

rz_intervention_request:
List additional Intervention Request subscribers
subscribers:

- class: "AM\\InterventionRequest\\Listener\\KrakenListener"
args:

- "your-api-key"
- "your-api-secret"
- true

Warning: Take note that each generated image is sent to kraken.io servers. It can generate some overhead
time on the first time you request an image.

Enable Two-factor authentication

Roadiz can use Two-factor authentication to secure your back-office access. You need to install composer
require roadiz/two-factor-bundle and configure it in your config/packages/scheb_2fa.
yaml and config/packages/security.yaml files.

See Two-factor authentication bundle documentation.

OpenID SSO authentication

Roadiz can use OpenID authentication to allow your users to log in with their Google account.

It supports 2 modes:

• Requires local user: Users must have a local account to be able to log in with OpenID. This is the de-
fault mode.

• No local user required: Users can log in with OpenID without having a local account. A virtual
account will be created for them with their email address as username and roles listed in
granted_roles. With this mode, you cannot use Preview mode as it requires a local user.

For both modes, you can restrict users to a specific domain with hosted_domain parameter.

config/packages/roadiz_rozier.yaml
roadiz_rozier:

open_id:
Verify User info in JWT at each login
verify_user_info: false

40 Chapter 3. Developer documentation

https://kraken.io/
https://github.com/roadiz/two-factor-bundle/tree/develop#configuration

Roadiz Documentation, Release 2.2.1

Standard OpenID autodiscovery URL, required to enable OpenId login in
→˓Roadiz CMS.

discovery_url: '%env(string:OPEN_ID_DISCOVERY_URL)%'
For public identity providers (such as Google), restrict users emails by

→˓their domain.
hosted_domain: '%env(string:OPEN_ID_HOSTED_DOMAIN)%'
OpenID identity provider OAuth2 client ID
oauth_client_id: '%env(string:OPEN_ID_CLIENT_ID)%'
OpenID identity provider OAuth2 client secret
oauth_client_secret: '%env(string:OPEN_ID_CLIENT_SECRET)%'
requires_local_user: false
granted_roles:

- ROLE_USER
- ROLE_BACKEND_USER
- ROLE_ACCESS_VERSIONS
- ROLE_ACCESS_DOCTRINE_CACHE_DELETE
- ROLE_ACCESS_DOCUMENTS
- ROLE_ACCESS_DOCUMENTS_LIMITATIONS
- ROLE_ACCESS_DOCUMENTS_DELETE
- ROLE_ACCESS_DOCUMENTS_CREATION_DATE
- ROLE_ACCESS_NODES
- ROLE_ACCESS_NODES_DELETE
- ROLE_ACCESS_NODES_SETTING
- ROLE_ACCESS_NODES_STATUS
- ROLE_ACCESS_REDIRECTIONS
- ROLE_ACCESS_TAGS
- ROLE_ACCESS_TAGS_DELETE
- ROLE_ACCESS_CUSTOMFORMS
- ROLE_ACCESS_CUSTOMFORMS_DELETE
- ROLE_ACCESS_CUSTOMFORMS_RETENTION
- ROLE_ACCESS_ATTRIBUTES
- ROLE_ACCESS_ATTRIBUTES_DELETE
- ROLE_ACCESS_NODE_ATTRIBUTES
- ROLE_ACCESS_SETTINGS
- ROLE_ACCESS_LOGS
- ROLE_ACCESS_USERS
- ROLE_ACCESS_USERS_DELETE
- ROLE_ACCESS_GROUPS
- ROLE_ACCESS_TRANSLATIONS

Console commands

Roadiz can be executed as a simple CLI tool using your SSH connection. This is useful to handle basic adminis-
tration tasks with no need of backoffice administration.

./bin/console

If your system is not configured to have php located in /usr/bin/php use it this way:

php ./bin/console

Default command with no arguments will show you the available commands list. Each command has its own
parameters. You can use the argument --help to get more information about each tool:

./bin/console install --help

We even made Doctrine CLI tools directly available from Roadiz Console. Be careful, these are powerful com-
mands which can alter your database and make you lose precious data. Especially when you will need to update
your database schema after a Theme or a Core update. Always make a database back-up before any Doctrine
operation.

3.1. Developer documentation 41

Roadiz Documentation, Release 2.2.1

Upgrading

Note: Always do a database backup before upgrading. You can use the mysqldump or pg_dump tools to
quickly export your database as a file.

• With a MySQL server: mysqldump -u[user] -p[user_password] [database_name] >
dumpfilename.sql

• With a PostgreSQL server: pg_dump -U [user] [database_name] -f dumpfilename.sql

Use Composer to update dependencies or Roadiz itself with Standard or Headless editions, make sure that your
Roadiz version constraint is set in your project composer.json file, then:

composer update -o;

Run database registered migrations (some migrations will be skipped according to your database type). Doctrine
migrations are the default method to upgrade all none-node-type related entities:

bin/console doctrine:migrations:migrate;

In order to avoid losing sensible node-sources data. You should regenerate your node-source entities classes files:

bin/console generate:nsentities;

Then check if there is no pending SQL changes due to your Roadiz node-types, this should be addressed with a
doctrine:migrations:migrate but you can check it with:

bin/console doctrine:schema:update --dump-sql;
Upgrade node-sources tables if necessary
bin/console doctrine:schema:update --dump-sql --force;

Then, clear your app caches:

Clear cache for each environment
bin/console cache:clear -e dev
bin/console cache:clear -e prod
bin/console cache:pool:clear cache.global_clearer
bin/console messenger:stop-workers

Note: If you are using a runtime cache like OPcache or APCu, you’ll need to purge cache manually because it
can’t be done from a CLI interface as they are shared cache engines. As a last chance try, you can restart your
php-fpm service.

Upgrading from Roadiz v2.1 to v2.2

Here is an extract for the Changelog

• Doctrine migrations are now the default method to upgrade all node-type related entities. You should run
bin/console doctrine:migrations:migrate after updating your Roadiz dependencies.

• Roadiz updated to API Platform new version and Metadata scheme. You must rewrite your api resource
YAML files to match new scheme. See API Platform documentation. You can remove any ns_**.yml
api resource files then run bin/console generate:api-resources to generate them again. But
any custom serialization groups will be lost.

• All node-type updates after Roadiz 2.2 will be versioned and will generate a Doctrine migration file. You
may generate a Migration file with any existing node-type and add it without executing it if you want to
keep a clean migration path, for new fresh website installs.

42 Chapter 3. Developer documentation

https://github.com/roadiz/core-bundle-dev-app/blob/main/CHANGELOG.md#v220-2023-12-12
https://api-platform.com/docs/core/upgrade-guide/

Roadiz Documentation, Release 2.2.1

• roadiz/models entities path changed from %kernel.project_dir%/vendor/roadiz/
models/src/Roadiz/Core/AbstractEntities to %kernel.project_dir%/lib/
Models/src/Core/AbstractEntities

• Logger is now handled by a different entity-manager to avoid flushing non-valid entities when persisting
log entries into database.

orm:
auto_generate_proxy_classes: true
default_entity_manager: default
entity_managers:

Put `logger` entity manager first to select it as default for Log entity
logger:

naming_strategy: doctrine.orm.naming_strategy.underscore_number_aware
mappings:

Just sharding EM to avoid having Logs in default EM
and flushing bad entities when storing log entries.
RoadizCoreLogger:

is_bundle: false
type: attribute
dir: '%kernel.project_dir%/vendor/roadiz/core-bundle/src/

→˓Logger/Entity'
prefix: 'RZ\Roadiz\CoreBundle\Logger\Entity'
alias: RoadizCoreLogger

default:
dql:

string_functions:
JSON_CONTAINS:

→˓Scienta\DoctrineJsonFunctions\Query\AST\Functions\Mysql\JsonContains
naming_strategy: doctrine.orm.naming_strategy.underscore_number_aware
auto_mapping: true
mappings:

Keep RoadizCoreLogger to avoid creating different migrations
→˓since we are using

the same database for both entity managers. Just sharding EM to
→˓avoid

having Logs in default EM and flushing bad entities when
→˓storing log entries.

RoadizCoreLogger:
is_bundle: false
type: attribute
dir: '%kernel.project_dir%/vendor/roadiz/core-bundle/src/

→˓Logger/Entity'
prefix: 'RZ\Roadiz\CoreBundle\Logger\Entity'
alias: RoadizCoreLogger

App:
is_bundle: false
type: attribute
dir: '%kernel.project_dir%/src/Entity'
prefix: 'App\Entity'
alias: App

...

3.1.2 Node system

Node-types, nodes-sources and nodes

This part is the most important part of Roadiz. Quite everything in your website will be a node.

Let’s check this simple node schema before explain it.

3.1. Developer documentation 43

Roadiz Documentation, Release 2.2.1

Now, it’s time to explain how it’s working!

What is a Node-type

A node-type is the blueprint for your node-source. It will contain all fields that Roadiz will use to generate an
extended node-source class.

For example, a node-type “Page” will contain “content” and “header image” fields. The “title” field is always
available as it is hard-coded in NodesSources class. After saving your node-type, Roadiz generates a NSPage
class which extends the NodesSources class. You will find it in the gen-src/GeneratedNodeSources
(or app/gen-src/GeneratedNodeSources with Roadiz Standard edition). Then Roadiz calls Doctrine
update tool to migrate your database schema. Do not modify the generated class. You’ll have to update it by the
backend interface.

Here is a schema to understand how node-types can define custom fields into node-sources:

44 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

Most of node-types management will be done in your backoffice interface. You will be able to create, update node-
types objects and each of their node-type fields independently. But if you prefer, you can use CLI commands to
create types and fields. With Roadiz CLI commands you get several tools to manage node-types. We really
encourage you to check the commands with --help argument, as following:

bin/console nodetypes:add-fields
bin/console nodetypes:create
bin/console nodetypes:delete
bin/console nodetypes:list

Keep in mind that each node-type or node-type fields operation require a database update as Doctrine have to
create a specific table per node-type. Do not forget to execute bin/console doctrine:schema:update
tools to perform updates. It’s very important to understand that Doctrine needs to see your node-types generated
classes before upgrading database schema. If they don’t exist, it won’t able to create your custom types tables, or
worst, it could delete existing data since Doctrine won’t recognize specific tables.

Now let’s have a look on node-sources.

Node-sources and translations

Once your node-type created, its definition is stored in database in node_types and node_type_fields
tables. This informations will be only used to build your node-sources edition forms in backoffice and to build a
custom database table.

3.1. Developer documentation 45

Roadiz Documentation, Release 2.2.1

Inheritance mapping

With Roadiz, each node-types data (called node-sources) is stored in a different table prefixed with ns_. When you
create a Page node-type with 2 fields (content and excerpt), Roadiz tells Doctrine to build a ns_page table with
2 columns and one primary key column inherited from nodes_sources table. It’s called inheritance mapping:
your ns_page table extends nodes_sources table and when you are querying a Page from database, Doctrine
mix the data coming from these 2 tables to create a complete node-source.

At the end your node-source Page won’t contain only 2 fields but many more as NodesSources entity offers
title, metaTitle, metaDescription, metaKeywords and others useful data-fields which can be used
among all node-types.

Translations

Node-sources inheritance mapping is not only used to customize data but to make data translations available. As
you saw in the first picture, each nodes can handle many node-sources, one per translation.

Node-type fields

Roadiz can handle many types of node-type fields. Here is a complete list:

Note: Title, meta-title, meta-description and keywords are always available since they are stored directly inside
NodesSources entity. Then you will be sure to always have a title no matter the node-type you are using.

Simple data

This following fields stores simple data in your custom node-source database table.

• Single-line text

• Date

• Date and time

• Basic text

• Markdown text

• Boolean

• Integer number

• Decimal number

• Email

• Color

• Single geographic coordinates

• Multiple geographic coordinates

• JSON code

• CSS code

• Country code (ISO 3166-1 alpha-2)

• YAML code

• Many to many join

• Many to one join

• Single relationship using a provider

• Multiple relationship using a provider

46 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

• Custom collection

Single and multiple geographic coordinates

Geographic coordinates are stored in JSON format in your database using GeoJSON schema:

• A single point will be stored as a GeoJSON feature in order to hold additional properties such as zoom,

• Multiple points will be stored as a GeoJSON feature collection

By default, Roadiz back-office uses Leaflet library with Open Street Map for tiles rendering and basic geo-coding
features.

Markdown options

You can restrict Markdown fields buttons using the following YAML configuration:

allow_h2: false
allow_h3: false
allow_h4: false
allow_h5: false
allow_h6: false
allow_bold: false
allow_italic: false
allow_blockquote: false
allow_list: false
allow_nbsp: false
allow_nb_hyphen: false
allow_image: false
allow_return: false
allow_link: false
allow_hr: false
allow_preview: false

Virtual data

Virtual types do not really store data in node-source table. They display custom widgets in your editing page to
link documents, nodes or custom-forms with your node-source.

• Documents

3.1. Developer documentation 47

https://geojson.org/

Roadiz Documentation, Release 2.2.1

• Nodes references

• Custom form

Complex data

These fields types must be created with default values (comma separated) in order to display available default
choices for “select-box” types:

• Single choice

• Multiple choices

• Children nodes

Children node field type is a special virtual field that will display a custom node-tree inside your editing page. You
can add quick-create buttons by listing your node-types names in default values input, comma separated.

Universal fields

If you need a field to hold exactly the same data for all translations, you can set it as universal. For example for
documents, numeric and boolean data that do not change from one language to another.

It will duplicate data at each save time from default translation to others. It will also hide the edit field from
non-default translation to avoid confusion.

YAML field

When you use YAML field type, you get an additional method to return your code already parsed. If your field is
named data, your methods will be generated in your NSEntity as getData() and getDataAsObject().

• getData() method will return your YAML code as string.

• getDataAsObject() will return a mixed data,array or stdObject according to your code formatting.
This method will throw a \Symfony\Component\Yaml\Exception\ParseException if your
YAML code is not valid.

Many to many and Many to one joins

You can create custom relations between your node-source and whatever Doctrine entities in Roadiz or in your
theme.

You must fill the default values field for these two types.

Entity class name
classname: Themes\MyTheme\Entities\City
Displayable is the method used to display entity name
displayable: getName
Same as Displayable but for a secondary information
alt_displayable: getZipCode
Searchable entity fields
searchable:

- name
- slug

orderBy:
- field: slug

direction: ASC

You can use a custom proxy entity to support persisting position on your relation. Roadiz will generate a
one-to-many relationship with proxy entity instead of a many-to-many. In this scenario you are responsible for
creating and migrating Themes\MyTheme\Entities\PositionedCity entity. If you are migrating from
a non-proxied many-to-many relation, you should keep the same table and field names to keep data intact.

48 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

Entity class name
classname: Themes\MyTheme\Entities\City
Displayable is the method used to display entity name
displayable: getName
Same as Displayable but for a secondary information
alt_displayable: getZipCode
Searchable entity fields
searchable:

- name
- slug

This order will only be used for explorer
orderBy:

- field: slug
direction: ASC

Use a proxy entity
proxy:

classname: Themes\MyTheme\Entities\PositionedCity
self: nodeSource
relation: city
This order will preserve position
orderBy:

- field: position
direction: ASC

Single and multiple provider

The generic provider type allow you to fetch every data you want through a Provider class in your theme. This
can be really useful if you need to fetch items from an external API and to reference them in your nodes-sources.

Imagine that you want to link your page with an Instagram post. You’ll have to create a class that extends
Themes\Rozier\Explorer\AbstractExplorerProvider and configure it in your field:

classname: Themes\MyTheme\Provider\ExternalApiProvider

This provider will implement getItems, getItemsById and other methods from
ExplorerProviderInterface in order to be able to display your Instagram posts in Roadiz
explorer widget and to find your selected items back. Each Instagram post will be wrapped in a
Themes\Rozier\Explorer\AbstractExplorerItem that will map your custom data to the right
fields to be showed in Roadiz back-office.

You’ll find an implementation example in Roadiz with Themes\Rozier\Explorer\SettingsProvider
and Themes\Rozier\Explorer\SettingExplorerItem. These classes do not fetch data from an API
but from your database using EntityListManager.

Single and multiple provider types can accept additional options too. If you want to make your provider config-
urable at runtime you can pass options in your field configuration.

classname: Themes\MyTheme\Provider\ExternalApiProvider
options:

- name: user
value: me

- name: access_token
value: xxxxx

Then you must override your provider’ configureOptions method to add which options are allowed.

use Symfony\Component\OptionsResolver\OptionsResolver;

/**
* @param OptionsResolver $resolver

*/
public function configureOptions(OptionsResolver $resolver)

3.1. Developer documentation 49

Roadiz Documentation, Release 2.2.1

{
$resolver->setDefaults([

'page' => 1,
'search' => null,
'itemPerPage' => 30,
// add more default options here
'user' => 'me',

]);
// You can required options
$resolver->setRequired('access_token');

}

Custom collection

Last but not least, you can create a custom collection field to store read-only data using a dedicated Symfony
AbstractType.

You must fill the default values field for this type:

AbstractType class name
entry_type: Themes\MyTheme\Form\FooBarType

You must understand that custom collection data will be stored as JSON array in your database. So you won’t be
able to query your node-source using this data.

In your FooBarType, you’ll be able to use Symfony standard fields types and Roadiz non-virtual fields too such
as MarkdownType, JsonType, YamlType.

Handling nodes and their hierarchy

By default, if you use Entities API methods or traversing Twig filters, Roadiz will automatically handle security
parameters such as node.status and preview mode.

// Secure method to get node-sources
// Implicitly check node.status
$this->nodeSourceApi->getBy([

'node.nodeType' => $blogPostType,
'translation' => $translation,

], [
'publishedAt' => 'DESC'

]);

This first code snippet is using Node-source API. This will automatically check if current user is logged-in and if
preview mode is ON to display or not unpublished nodes.

// Insecure method to get node-sources
// Doctrine raw method will get all node-sources
$this->managerRegistry->getRepository(NSBlogPost::class)->findBy([], [

'publishedAt' => 'DESC',
'translation' => $translation,

]);

This second code snippet uses standard Doctrine Entity Manager to directly grab node-sources by their entity
class. This method does not check any security and will return every node-sources, even unpublished, archived
and deleted ones.

Hierarchy

To traverse node-sources hierarchy, the easier method is to use Twig filters on your nodeSource entity. Filters
will implicitly set translation from origin node-source.

50 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

{% set children = nodeSource|children %}
{% set nextSource = nodeSource|next %}
{% set prevSource = nodeSource|previous %}
{% set parent = nodeSource|parent %}

{% set children = nodeSource|children({
'node.visible': true

}) %}

Warning: All these filters will take care of publication status and translation, but not publication date-time
neither visibility.

{% set children = nodeSource|children({
'node.visible': true,
'publishedAt': ['>=', date()],

}, {
'publishedAt': 'DESC'

}) %}

{% set nextVisible = nodeSource|next({
'node.visible': true

}) %}

If you need to traverse node-source graph from your controllers you can use the Entity API. Moreover, Nodes-
sources API allows you to filter using custom criteria if you choose a specific NodeType.

$children = $this->nodeSourceApi->getBy([
'node.parent' => $nodeSource,
'node.visible' => true,
'publishedAt' => ['>=', new \DateTime()],
'translation' => $nodeSource->getTranslation(),

],[
'publishedAt' => 'DESC'

]);

Warning: Browsing your node graph (calling children or parents) could be very greedy and unoptimized
if you have lots of node-types. Internally Doctrine will inner-join every nodes-sources tables to perform
polymorphic hydration. So, make sure you filter your queries by one NodeType as much as possible with
nodeSourceApi and node.nodeType criteria.

// Here Doctrine will only join NSPage table to NodesSources
$children =$this->nodeSourceApi->getBy([

'node.nodeType' => $this->nodeTypesBag->get('Page'),
'node.parent' => $nodeSource,
'node.visible' => true,
'publishedAt' => ['>=', new \DateTime()],
'translation' => $nodeSource->getTranslation(),

],[
'publishedAt' => 'DESC'

]);

Visibility

There are two parameters that you must take care of in your themes and your controllers, because they are not
mandatory in all website cases:

• Visibility

3.1. Developer documentation 51

Roadiz Documentation, Release 2.2.1

• Publication date and time

For example, publication date and time won’t be necessary in plain text pages and not timestampable contents.
But we decided to add it directly in NodesSources entity to be able to filter and order with this field in Roadiz
back-office. This was not possible if you manually create your own publishedAt as a node-type field.

Warning: Pay attention that publication date and time (publishedAt) and visibility (node.visible)
does not prevent your node-source from being viewed if you did not explicitly forbid access to its controller.
This field is not deeply set into Roadiz security mechanics.

If you need so, make sure that your node-type controller checks these two fields and throws a
ResourceNotFoundException if they’re not satisfied.

class BlogPostController extends MyAwesomeTheme
{

public function indexAction(
Request $request,
Node $node = null,
TranslationInterface $translation = null

) {
$this->prepareThemeAssignation($node, $translation);

$now = new DateTime("now");
if (!$nodeSource->getNode()->isVisible() ||

$nodeSource->getPublishedAt() < $now) {
throw new ResourceNotFoundException();

}

return $this->render(
'types/blogpost.html.twig',
$this->assignation

);
}

}

Publication workflow

Each Node state is handled by a Workflow to switch between the following 5 states:

States

• Node::DRAFT

• Node::PENDING

• Node::PUBLISHED

• Node::ARCHIVED

• Node::DELETED

Transitions

• review

• reject

• publish

• archive

• unarchive

52 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

• delete

• undelete

You cannot changes a Node status directly using its setter, you must use Roadiz main registry to perform transition.
This can prevent unwanted behaviours and you can track changes with events and guards:

$nodeWorkflow = $this->workflowRegistry->get($node);
if ($nodeWorkflow->can($node, 'publish')) {

$nodeWorkflow->apply($node, 'publish');
}

Generating paths and url

You can use generateUrl() in your controllers to get a node-source’ path or url. In your Twig template, you
can use path method as described in Twig section: twig-generate-paths.

use Symfony\Cmf\Component\Routing\RouteObjectInterface;

class BlogPostController extends MyAwesomeTheme
{

public function indexAction(
Request $request,
Node $node = null,
TranslationInterface $translation = null

) {
$this->prepareThemeAssignation($node, $translation);

// Generate a path for current node-source
$path = $this->generateUrl(

RouteObjectInterface::OBJECT_BASED_ROUTE_NAME,
[RouteObjectInterface::ROUTE_OBJECT => $this->nodeSource]

);

// Generate an absolute URL for current node-source
$absoluteUrl = $this->generateUrl(

RouteObjectInterface::OBJECT_BASED_ROUTE_NAME,
[RouteObjectInterface::ROUTE_OBJECT => $this->nodeSource],
UrlGeneratorInterface::ABSOLUTE_URL

);
}

}

Overriding default node-source path generation

You can override default node-source path generation in order to use {{ path() }} method
in your Twig templates but with a custom logic. For example, you have a Link node-
type which purpose only is to link to an other node in your website. When you call path
or URL generation on it, you should prefer getting its linked node path, so you can listen to
RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesPathGeneratingEvent:class
event and stop propagation to return your linked node path instead of your link node path.

use GeneratedNodeSources\NSLink;
use Symfony\Component\EventDispatcher\EventDispatcherInterface;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesPathGeneratingEvent;

class LinkPathGeneratingEventListener implements EventSubscriberInterface
{

public static function getSubscribedEvents(): array
{

return [

3.1. Developer documentation 53

Roadiz Documentation, Release 2.2.1

NodesSourcesPathGeneratingEvent:class => ['onLinkPathGeneration']
];

}

/**
* @param NodesSourcesPathGeneratingEvent $event

* @param string $eventName

* @param EventDispatcherInterface $dispatcher

*/
public function onLinkPathGeneration(

NodesSourcesPathGeneratingEvent $event,
$eventName,
EventDispatcherInterface $dispatcher

) {
$nodeSource = $event->getNodeSource();

if ($nodeSource instanceof NSLink) {
if (filter_var($nodeSource->getExternalUrl(), FILTER_VALIDATE_URL)) {

/*
* If editor linked to an external link

*/
$event->stopPropagation();
$event->setComplete(true);
$event->setContainsScheme(true); // Tells router not to prepend

→˓protocol and host to current URL
$event->setPath($nodeSource->getExternalUrl());

} elseif (count($nodeSource->getNodeReferenceSources()) > 0 &&
null !== $linkedSource = $nodeSource->

→˓getNodeReferenceSources()[0]) {
/*
* If editor linked to an internal page through a node reference

*/
/** @var FilterNodeSourcePathEvent $subEvent */
$subEvent = clone $event;
$subEvent->setNodeSource($linkedSource);
/*
* Dispatch a path generation again for linked node-source.

*/
$dispatcher->dispatch($subEvent);
/*
* Fill main event with sub-event data

*/
$event->setPath($subEvent->getPath());
$event->setComplete($subEvent->isComplete());
$event->setParameters($subEvent->getParameters());
$event->setContainsScheme($subEvent->containsScheme());
// Stop propagation AFTER sub-event was dispatched not to prevent

→˓it to perform.
$event->stopPropagation();

}
}

}
}

3.1.3 Building headless websites using API
Since Roadiz v2, headless development is default and is the most powerful way to build reactive websites and
applications. Roadiz is built on API Platform, and it exposes all main entities as API Resources using DTO (data
transfer objects)

54 Chapter 3. Developer documentation

https://api-platform.com/
https://api-platform.com/docs/core/dto/#using-data-transfer-objects-dtos
https://api-platform.com/docs/core/dto/#using-data-transfer-objects-dtos

Roadiz Documentation, Release 2.2.1

Fig. 3.1: Consuming Roadiz API with Postman application is a great way to explore and test REST calls for your
frontend app

WebResponse concept

A REST-ful API will expose collection and item entry-points for each resource. But in both case, you need to
know your resource type or your resource identifier before executing your API call. Roadiz introduces a special
resource named WebResponse which can be called using a path query param in order to reduce as much as
possible API calls and address N+1 problem.

GET /api/web_response_by_path?path=/contact

API will expose a WebResponse single item containing:

• An item

• Item breadcrumbs

• Head object

• Item blocks tree-walker

• Item realms

• and if blocks are hidden by Realm configuration

Note: Roadiz WebResponse is used in Rezo Zero Nuxt Starter to populate all data during the asyncData()
routine in _.vue page

{
"@context": "/api/contexts/WebResponse",
"@id": "/api/web_response_by_path?path=/contact",
"@type": "WebResponse",
"item": {

3.1. Developer documentation 55

https://restfulapi.net/rest-api-n-1-problem/
https://github.com/rezozero/nuxt-starter#dynamic-page-data-based-on-requestpath

Roadiz Documentation, Release 2.2.1

"@id": "/api/pages/7",
"@type": "Page",
"content": "Magni deleniti ut eveniet. Aliquam aut et excepturi vitae

→˓placeat molestiae. Molestiae asperiores nihil sed temporibus quibusdam. Non
→˓magnam fuga at. sdf",

"subTitle": null,
"overTitle": null,
"headerImage": [],
"test": null,
"pictures": [],
"nodeReferences": [],
"stickytest": false,
"sticky": false,
"customForm": [],
"title": "Contact",
"publishedAt": "2021-09-10T15:56:00+02:00",
"metaTitle": "",
"metaKeywords": "",
"metaDescription": "",
"users": [],
"node": {

"@type": "Node",
"@id": "/api/nodes/7",
"visible": true,
"position": 3,
"tags": []

},
"slug": "contact",
"url": "/contact"

},
"breadcrumbs": {

"@type": "Breadcrumbs",
"@id": "_:14750",
"items": []

},
"head": {

"@type": "NodesSourcesHead",
"@id": "_:14679",
"googleAnalytics": null,
"googleTagManager": null,
"matomoUrl": null,
"matomoSiteId": null,
"siteName": "Roadiz dev website",
"metaTitle": "Contact - Roadiz dev website",
"metaDescription": "Contact, Roadiz dev website",
"policyUrl": null,
"mainColor": null,
"facebookUrl": null,
"instagramUrl": null,
"twitterUrl": null,
"youtubeUrl": null,
"linkedinUrl": null,
"homePageUrl": "/",
"shareImage": null

},
"blocks": [],
"realms": [],
"hidingBlocks": false

}

56 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

Override WebResponse block walker

Imagine you have a block (ArticleFeedBlock) which should list latest news (Article). You can use tree-walker
mechanism to fetch latest news and expose them as if they were children of your article feed block. This requires
to create a custom definition:

<?php

declare(strict_types=1);

namespace App\TreeWalker\Definition;

use App\GeneratedEntity\NSArticle;
use App\GeneratedEntity\NSArticleFeedBlock;
use Doctrine\ORM\Tools\Pagination\Paginator;
use RZ\Roadiz\CoreBundle\Api\TreeWalker\NodeSourceWalkerContext;
use RZ\Roadiz\CoreBundle\Entity\NodesSources;
use RZ\TreeWalker\Definition\ContextualDefinitionTrait;
use RZ\TreeWalker\Definition\StoppableDefinition;
use RZ\TreeWalker\WalkerInterface;

final class ArticleFeedBlockDefinition implements StoppableDefinition
{

use ContextualDefinitionTrait;

public function isStoppingCollectionOnceInvoked(): bool
{

return true;
}

/**
* @param NodesSources $source

* @param WalkerInterface $walker

* @return array

* @throws \Exception

*/
public function __invoke(NodesSources $source, WalkerInterface $walker): array
{

if ($this->context instanceof NodeSourceWalkerContext) {
$this->context->getStopwatch()->start(self::class);
if (!$source instanceof NSArticleFeedBlock) {

throw new \InvalidArgumentException('Source must be instance of ' .
→˓ NSArticleFeedBlock::class);

}

$criteria = [
'node.visible' => true,
'publishedAt' => ['<=', new \DateTime()],
'translation' => $source->getTranslation(),
'node.nodeType' => $this->context->getNodeTypesBag()->get('Article

→˓')
];

// Prevent Article feed to list root Article again
$root = $walker->getRoot()->getItem();
if ($root instanceof NSArticle) {

$criteria['id'] = ['!=', $root->getId()];
}

if (null !== $source->getNode() && \count($source->getNode()->
→˓getTags()) > 0) {

$criteria['tags'] = $source->getNode()->getTags();
$criteria['tagExclusive'] = true;

3.1. Developer documentation 57

Roadiz Documentation, Release 2.2.1

}

$count = (int) ($source->getListingCount() ?? 4);

$children = $this->context->getNodeSourceApi()->getBy($criteria, [
'publishedAt' => 'DESC'

], $count);

if ($children instanceof Paginator) {
$iterator = $children->getIterator();
if ($iterator instanceof \ArrayIterator) {

$children = $iterator->getArrayCopy();
} else {

throw new \RuntimeException('Unexpected iterator type');
}

}

$this->context->getStopwatch()->stop(self::class);

return $children;
}
throw new \InvalidArgumentException('Context should be instance of ' .

→˓NodeSourceWalkerContext::class);
}

}

Then create a definition factory which will be injected using Symfony autoconfigure tag roadiz_core.
tree_walker_definition_factory.

roadiz_core.tree_walker_definition_factory tag must include a classname attribute which
will be used to match your definition factory with the right node source class.

<?php

declare(strict_types=1);

namespace App\TreeWalker\Definition;

use App\GeneratedEntity\NSArticleFeedBlock;
use RZ\Roadiz\CoreBundle\Api\TreeWalker\Definition\DefinitionFactoryInterface;
use RZ\TreeWalker\WalkerContextInterface;
use Symfony\Component\DependencyInjection\Attribute\AutoconfigureTag;

#[AutoconfigureTag(
name:'roadiz_core.tree_walker_definition_factory',
attributes: ['classname' => NSArticleFeedBlock::class]

)]
final class ArticleFeedBlockDefinitionFactory implements DefinitionFactoryInterface
{

public function create(WalkerContextInterface $context, bool $onlyVisible =
→˓true): callable

{
return new ArticleFeedBlockDefinition($context);

}
}

This way, all tree-walkers will be able to use your custom definition anytime a NSArticleFeedBlock is
encountered.

You can debug all registered definition factories using bin/console debug:container
--tag=roadiz_core.tree_walker_definition_factory command.

58 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

Retrieve common content

Now that we can fetch each page data, we need to get all unique content for building Menus, Homepage reference,
headers, footers, etc. We could extend our _WebResponse_ to inject theses common data to each request, but it
would bloat HTTP responses, and affect API performances.

For these common content, you can create a /api/common_content API endpoint in your project which will
fetched only once in your frontend application.

config/api_resources/common_content.yml
App\Api\Model\CommonContent:

operations:
getCommonContent:

class: ApiPlatform\Metadata\Get
method: 'GET'
uriTemplate: '/common_content'
read: false
controller: App\Controller\GetCommonContentController
pagination_enabled: false
normalizationContext:

enable_max_depth: true
pagination_enabled: false
groups:

- get
- common_content
- web_response
- walker
- walker_level
- children
- children_count
- nodes_sources_base
- nodes_sources_default
- urls
- blocks_urls
- tag_base
- translation_base
- document_display
- document_folders

Note: Keep in mind that /api/common_content endpoint uses nodes_sources_base normalization
group which will only include essential node sources data. You can add more groups to include more data, such
as nodes_sources_default or nodes_sources_cta if you grouped some fields into a CTA label.

Then create you own custom resource to hold your menus tree-walkers and common content. Tree-walkers will
be created using RZ\Roadiz\CoreBundle\Api\TreeWalker\TreeWalkerGenerator service. Tree-
WalkerGenerator will create a App\TreeWalker\MenuNodeSourceWalker instance for each node source
of type Menu located on your website root.

<?php

declare(strict_types=1);

namespace App\Controller;

use App\Api\Model\CommonContent;
use App\TreeWalker\MenuNodeSourceWalker;
use Doctrine\Persistence\ManagerRegistry;
use RZ\Roadiz\Core\AbstractEntities\TranslationInterface;
use RZ\Roadiz\CoreBundle\Api\Model\NodesSourcesHeadFactoryInterface;
use RZ\Roadiz\CoreBundle\Api\TreeWalker\TreeWalkerGenerator;
use RZ\Roadiz\CoreBundle\Preview\PreviewResolverInterface;

3.1. Developer documentation 59

Roadiz Documentation, Release 2.2.1

use RZ\Roadiz\CoreBundle\Repository\TranslationRepository;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\RequestStack;
use Symfony\Component\HttpKernel\Exception\NotFoundHttpException;
use Symfony\Component\Routing\Exception\ResourceNotFoundException;

final class GetCommonContentController extends AbstractController
{

private RequestStack $requestStack;
private ManagerRegistry $managerRegistry;
private NodesSourcesHeadFactoryInterface $nodesSourcesHeadFactory;
private PreviewResolverInterface $previewResolver;
private TreeWalkerGenerator $treeWalkerGenerator;

public function __construct(
RequestStack $requestStack,
ManagerRegistry $managerRegistry,
NodesSourcesHeadFactoryInterface $nodesSourcesHeadFactory,
PreviewResolverInterface $previewResolver,
TreeWalkerGenerator $treeWalkerGenerator

) {
$this->requestStack = $requestStack;
$this->managerRegistry = $managerRegistry;
$this->nodesSourcesHeadFactory = $nodesSourcesHeadFactory;
$this->previewResolver = $previewResolver;
$this->treeWalkerGenerator = $treeWalkerGenerator;

}

public function __invoke(): ?CommonContent
{

try {
$request = $this->requestStack->getMainRequest();
$translation = $this->getTranslationFromRequest($request);

$resource = new CommonContent();

$request?->attributes->set('data', $resource);
$resource->head = $this->nodesSourcesHeadFactory->createForTranslation(

→˓$translation);
$resource->home = $resource->head->getHomePage();
$resource->menus = $this->treeWalkerGenerator->

→˓getTreeWalkersForTypeAtRoot(
'Menu',
MenuNodeSourceWalker::class,
$translation,
3

);
return $resource;

} catch (ResourceNotFoundException $exception) {
throw new NotFoundHttpException($exception->getMessage(), $exception);

}
}

protected function getTranslationFromRequest(?Request $request):
→˓TranslationInterface

{
$locale = null;

if (null !== $request) {
$locale = $request->query->get('_locale');

/*

60 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

* If no _locale query param is defined check Accept-Language header

*/
if (null === $locale) {

$locale = $request->getPreferredLanguage($this->
→˓getTranslationRepository()->getAllLocales());

}
}
/*
* Then fallback to default CMS locale

*/
if (null === $locale) {

$translation = $this->getTranslationRepository()->findDefault();
} elseif ($this->previewResolver->isPreview()) {

$translation = $this->getTranslationRepository()
->findOneByLocaleOrOverrideLocale((string) $locale);

} else {
$translation = $this->getTranslationRepository()

->findOneAvailableByLocaleOrOverrideLocale((string) $locale);
}
if (null === $translation) {

throw new NotFoundHttpException('No translation for locale ' .
→˓$locale);

}
return $translation;

}

protected function getTranslationRepository(): TranslationRepository
{

$repository = $this->managerRegistry->
→˓getRepository(TranslationInterface::class);

if (!$repository instanceof TranslationRepository) {
throw new \RuntimeException(

'Translation repository must be instance of ' .
TranslationRepository::class

);
}
return $repository;

}
}

Then, the following resource will be exposed:

{
"@context": "/api/contexts/CommonContent",
"@id": "/api/common_content",
"@type": "CommonContent",
"home": {

"@id": "/api/pages/11",
"@type": "Page",
"content": null,
"image": [],
"title": "Accueil",
"publishedAt": "2022-04-12T16:24:00+02:00",
"node": {

"@type": "Node",
"@id": "/api/nodes/10",
"visible": true,
"tags": []

},
"slug": "accueil",
"url": "/fr"

},
"menus": {

3.1. Developer documentation 61

Roadiz Documentation, Release 2.2.1

"mainMenuWalker": {
"@type": "MenuNodeSourceWalker",
"@id": "_:3341",
"children": [],
"childrenCount": 0,
"item": {

"@id": "/api/menus/2",
"@type": "Menu",
"title": "Menu principal",
"publishedAt": "2022-04-12T00:39:00+02:00",
"node": {

"@type": "Node",
"@id": "/api/nodes/1",
"visible": false,
"tags": []

},
"slug": "main-menu"

},
"level": 0,
"maxLevel": 3

},
"footerMenuWalker": {

"@type": "MenuNodeSourceWalker",
"@id": "_:2381",
"children": [],
"childrenCount": 0,
"item": {

"@id": "/api/menus/3",
"@type": "Menu",
"linkInternalReference": [],
"title": "Menu du pied de page",
"publishedAt": "2022-04-12T11:18:12+02:00",
"node": {

"@type": "Node",
"@id": "/api/nodes/2",
"visible": false,
"tags": []

},
"slug": "footer-menu"

},
"level": 0,
"maxLevel": 3

},
"footerWalker": {

"@type": "AutoChildrenNodeSourceWalker",
"@id": "_:2377",
"children": [],
"childrenCount": 0,
"item": {

"@id": "/api/footers/16",
"@type": "Footer",
"content": "",
"title": "Pied de page",
"publishedAt": "2022-04-12T19:02:47+02:00",
"node": {

"@type": "Node",
"@id": "/api/nodes/15",
"visible": false,
"tags": []

},
"slug": "footer"

},
"level": 0,

62 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

"maxLevel": 3
}

},
"head": {

"@type": "NodesSourcesHead",
"@id": "_:14679",
"googleAnalytics": null,
"googleTagManager": null,
"matomoUrl": null,
"matomoSiteId": null,
"siteName": "Roadiz dev website",
"metaTitle": "Contact - Roadiz dev website",
"metaDescription": "Contact, Roadiz dev website",
"policyUrl": null,
"mainColor": null,
"facebookUrl": null,
"instagramUrl": null,
"twitterUrl": null,
"youtubeUrl": null,
"linkedinUrl": null,
"homePageUrl": "/",
"shareImage": null

}
}

Exposing node-types

All resources configuration files are located in ./config/api_resources folder.

Here is an example of API resource for a Page node-type, you’ll find default operations``plus a
special ``getByPath operation which allow overriding WebResponse serialization groups.

App\GeneratedEntity\NSPage:
types:

- Page
operations:

ApiPlatform\Metadata\GetCollection:
method: GET
shortName: Page
normalizationContext:

enable_max_depth: true
groups:

- nodes_sources_base
- nodes_sources_default
- urls
- tag_base
- translation_base
- document_display
- document_thumbnails
- document_display_sources
- nodes_sources_images
- nodes_sources_boolean

_api_page_archives:
method: GET
class: ApiPlatform\Metadata\GetCollection
shortName: Page
uriTemplate: /pages/archives
extraProperties:

archive_enabled: true
openapiContext:

summary: 'Retrieve all Page ressources archives months and years'
ApiPlatform\Metadata\Get:

3.1. Developer documentation 63

Roadiz Documentation, Release 2.2.1

method: GET
shortName: Page
normalizationContext:

groups:
- nodes_sources
- urls
- tag_base
- translation_base
- document_display
- document_thumbnails
- document_display_sources
- nodes_sources_images
- nodes_sources_boolean

getByPath:
method: GET
class: ApiPlatform\Metadata\Get
uriTemplate: /web_response_by_path
read: false
controller:

→˓RZ\Roadiz\CoreBundle\Api\Controller\GetWebResponseByPathController
normalizationContext:

pagination_enabled: false
enable_max_depth: true
groups:

- nodes_sources
- node_listing
- urls
- tag_base
- translation_base
- document_display
- document_thumbnails
- document_display_sources
- nodes_sources_images
- nodes_sources_boolean
- web_response
- walker
- walker_level
- walker_metadata
- meta
- children

openapiContext:
tags:

- WebResponse
summary: 'Get a resource by its path wrapped in a WebResponse

→˓object'
description: 'Get a resource by its path wrapped in a WebResponse'
parameters:

- { type: string, name: path, in: query, required: true,
→˓description: 'Resource path, or `/` for home page', schema: { type: string } }

To automatically generate your resources YAML configuration files, execute the following CLI command:

bin/console generate:api-resources

Serialization groups

Roadiz CMS uses symfony/serializer to perform JSON serialization over any objects, especially Doctrine
entities.

id Serialize every entity id.

timestamps Serialize every date-timed entity createdAt and updatedAt fields.

64 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

position Serialize every entity position fields.

color Serialize every entity color fields.

nodes_sources Serialize entities in a NodesSources context (all fields).

nodes_sources_base Serialize entities in a NodesSources context, but with essential information.

nodes_sources_documents Serialize documents linked to a NodesSources for each virtual field.

nodes_sources_default Serialize NodesSources fields not contained in any group.

nodes_sources_‘‘group‘‘ Custom serialization groups are created according to your node-typ fields groups.
For example, if you set a field to a link group, nodes_sources_link serialization group will be
automatically generated for this field. Be careful, Roadiz will use groups canonical names to generate
serialization groups, it can mix _ and -.

node Serialize entities in a Node context.

node_children Serialize Nodes with their children.

node_attributes Serialize Nodes with their attribute values.

node_listing Serialize Nodes and NodesSources with their listing children options. Adds
listingSortOptions field to node-sources, with for example { "node.position": "ASC"
} to be able to fetch children nodes in a the same order as in the back-office. If the current se-
rialized node-source’ parent is hiding its children, listingSortOptions will be contain parent’s
listingSortOptions instead.

tag Serialize Tag.

tag_base Serialize Tags with minimum information.

tag_parent Serialize Tags with their parent.

tag_children Serialize Tags with their children, do not use with tag_parent group.

tag_documents Serialize Tags with their documents.

tag_color Serialize Tags with their color field.

tag_children_order Serialize Tags with their children_order fields.

node_type Serialize entities in a NodeType context.

attribute Serialize entities in a Attribute context.

attribute_documents Serialize documents linked to a Attribute for each virtual field.

custom_form Serialize entities in a CustomForm context.

document Serialize entities in a Document context.

document_display Serialize Document information required for displaying them.

document_private Serialize Document privacy information

document_display_sources Serialize Document information required for displaying alternative sources (au-
dio, video).

document_thumbnails Serialize Document first available thumbnail.

document_folders Serialize Document information required for displaying attached visible folders.

document_folders_all Serialize all Document attached folders, even not visible ones.

folder Serialize entities in a Folder context.

translation Serialize entities in a Translation context.

translation_base Serialize Translation information required for displaying them.

setting Serialize entities in a Setting context.

setting_group Serialize entities in a SettingGroup context.

3.1. Developer documentation 65

Roadiz Documentation, Release 2.2.1

user Serialize entities in a User context.

user_group Serialize User entity with its groups.

user_role Serialize User entity with its roles.

user_personal Serialize User entity with its personal information.

user_identifier Serialize User entity with its identifier (may be a personal information).

We recommend using Rezo Zero Nuxt starter to build your frontend applications. This starter is built to use Roadiz
API and relies on dynamic routing and supports API redirections.

3.1.4 Tag system
Nodes are essentially hierarchical entities. So we created an entity to link nodes between them no matter
where/what they are. Tags are meant as tag nodes, we couldn’t be more explicit. But if you didn’t understand here
is a schema:

You can see that tags can gather heterogeneous nodes coming from different types (pages and projects). Tags can
be used to display a category-navigation on your theme or to simply tidy your backoffice node database.

Did you notice that Tags are related to Nodes entities, not NodesSources? We thought that it would be easier
to manage that way not to forget to tag a specific node translation. It means that you won’t be able to differentiate
tag two NodesSources, if you absolutely need to, we encourage you to create two different nodes.

Translate tags

You will notice that tags work the same way as nodes do. By default, tags names can’t contain special characters
in order to be used in URLs. So we created TagTranslation entities which stand for Tag’s sources:

In that way you will be able to translate your tags for each available languages and link documents to them.

66 Chapter 3. Developer documentation

https://github.com/rezozero/nuxt-starter

Roadiz Documentation, Release 2.2.1

Tag hierarchy

In the same way as Nodes work, tags can be nested to create tag groups.

Exposing tags in API

When using API Platform data transfer objects, Tags are ready-to-use with translations set-up on name and
description fields:

{
"@type": "Tag",
"@id": "/api/tags/6",
"slug": "event",
"name": "Event",
"description": null,
"color": "#000000",
"visible": true,
"documents": [],
"parent": {

"@type": "Tag",
"@id": "/api/tags/3",
"slug": "type",
"name": "Type",
"description": null,
"color": "#000000",
"visible": true,
"documents": [],
"parent": null

}
}

Displaying node-source tags with Twig

Tag translations are already set up to track your current locale if you fetched them using |tags Twig filter. Simply
use getTranslatedTags()->first() Tag method to use them in your templates.

{% set tags = nodeSource|tags %}

{% for tag in tags %}

{% set tagTranslation = tag.translatedTags.first %}
<li id="{{ tag.tagName }}">{{ tagTranslation.name }}

{% endfor %}

Tags translations documents

Documents can be linked to your tag translations. They will be different for each translation, so make sure to
synchronize them manually if you want to use the same document for all translations.

They are available with getDocuments() method and will be ordered by position only.

Imagine, you want to link a PDF document for each of your tags, you can create a download link as described
below:

{% set tags = nodeSource|tags %}

{% for tag in tags %}

{% set tagTranslation = tag.translatedTags.first %}
<li id="{{ tag.tagName }}">

<p>{{ tagTranslation.name }}</p>
{% if tagTranslation.documents[0] %}

{
→˓% trans %}download_tag_pdf{% endtrans %}

3.1. Developer documentation 67

Roadiz Documentation, Release 2.2.1

{% endif %}

{% endfor %}

3.1.5 Documents system

Storing documents elsewhere. . .

Storing documents outside of your web-server is a good practice for many reasons:

• it allows to scale your application easily

• it allows to use a CDN to deliver your documents

• it allows to use a dedicated storage service (like Amazon S3) to store your documents

Documents system is based on Flysystem, a filesystem abstraction layer. It allows to store documents on local
filesystem, Amazon S3, Google Cloud Storage, Rackspace Cloud Storage, Dropbox, FTP server, etc.

If you want to override default configuration, you can create a config/packages/flysystem.yaml file in
your project and you must declare 3 storages:

• documents_public.storage: used to store public documents (accessible by anyone)

• documents_private.storage: used to store private documents (accessible only by authenticated
users, or custom access control)

• intervention_request.storage: only used by Image processing system to store assets files

Following example shows how to configure Flysystem to use Scaleway Object Storage (S3 compatible) service:

config/packages/flysystem.yaml
Read the documentation at https://github.com/thephpleague/flysystem-bundle/blob/
→˓master/docs/1-getting-started.md
services:

scaleway_public_client:
class: 'AsyncAws\SimpleS3\SimpleS3Client'
arguments:

- endpoint: '%env(SCALEWAY_STORAGE_ENDPOINT)%'
accessKeyId: '%env(SCALEWAY_STORAGE_ID)%'
accessKeySecret: '%env(SCALEWAY_STORAGE_SECRET)%'
region: '%env(SCALEWAY_STORAGE_REGION)%'

Private client must be different for allowing copy across file systems.
scaleway_private_client:

class: 'AsyncAws\SimpleS3\SimpleS3Client'
arguments:

- endpoint: '%env(SCALEWAY_STORAGE_ENDPOINT)%'
accessKeyId: '%env(SCALEWAY_STORAGE_ID)%'
accessKeySecret: '%env(SCALEWAY_STORAGE_SECRET)%'
region: '%env(SCALEWAY_STORAGE_REGION)%'

flysystem:
storages:

documents_public.storage:
adapter: 'asyncaws'
visibility: 'public'
options:

client: 'scaleway_public_client'
bucket: '%env(SCALEWAY_STORAGE_BUCKET)%'
prefix: 'testing-public-files'

documents_private.storage:
adapter: 'asyncaws'
visibility: 'private'
options:

68 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

client: 'scaleway_private_client'
bucket: '%env(SCALEWAY_STORAGE_BUCKET)%'
prefix: 'testing-private-files'

intervention_request.storage:
adapter: 'asyncaws'
visibility: 'public'
options:

client: 'scaleway_public_client'
bucket: '%env(SCALEWAY_STORAGE_BUCKET)%'
prefix: 'testing-public-files'

Exposing documents in API

When using API Platform data transfer objects, Documents are ready-to-use with translations set-up on name
and description fields. Made sure to configure your API operations with at least document_display
serialization group:

{
"@type": "Document",
"@id": "/api/documents/xxxxx",
"relativePath": "xxxxxxx/my_image.jpg",
"type": "image",
"mimeType": "image/jpeg",
"name": null,
"description": null,
"embedId": null,
"embedPlatform": null,
"imageAverageColor": "#141414",
"imageWidth": 1000,
"imageHeight": 750,
"mediaDuration": 0,
"copyright": "© John Doe",
"externalUrl": null,
"processable": true,
"thumbnail": null,
"alt": "This is an image"

}

Expose document thumbnails

Thumbnails are exposed by default for each document, it is useful when documents are not displayable: PDF,
native video, ZIP, etc:

{
"@type": "Document",
"@id": "/api/documents/xxxxx",
"relativePath": "xxxxxxx/img_2004_framed_1080p_2000.webm",
"type": "video",
"mimeType": "video/webm",
"name": null,
"description": null,
"embedId": null,
"embedPlatform": null,
"imageAverageColor": null,
"imageWidth": 1920,
"imageHeight": 1080,
"mediaDuration": 14,
"copyright": null,
"externalUrl": null,
"processable": false,
"thumbnail": {

3.1. Developer documentation 69

Roadiz Documentation, Release 2.2.1

"@type": "Document",
"@id": "/api/documents/xxxxx",
"relativePath": "xxxxxxx/img_2004_framed_1080p_2000.png",
"type": "image",
"mimeType": "image/png",
"name": null,
"description": null,
"embedId": null,
"embedPlatform": null,
"imageAverageColor": "#917357",
"imageWidth": 2662,
"imageHeight": 1504,
"mediaDuration": 0,
"copyright": null,
"externalUrl": null,
"processable": true,
"thumbnail": null,
"alt": "img_2004_framed_1080p_2000.png"

},
"alt": "img_2004_framed_1080p_2000.webm"

}

Expose document alternative sources

Alternative sources are not serialized by default for performance matters, but you can enable them in your project.
Add document_display_sources serialization group to your resource configuration.

{
"@type": "Document",
"@id": "/api/documents/xxxxx",
"relativePath": "xxxxxxxx/img_2004_framed_1080p_2000.webm",
"type": "video",
"mimeType": "video/webm",
"name": null,
"description": null,
"embedId": null,
"embedPlatform": null,
"imageAverageColor": null,
"imageWidth": 1920,
"imageHeight": 1080,
"mediaDuration": 14,
"copyright": null,
"externalUrl": null,
"processable": false,
"thumbnail": {

"@type": "Document",
"@id": "/api/documents/xxxxx",
"relativePath": "xxxxxxxx/img_2004_framed_1080p_2000.png",
"type": "image",
"mimeType": "image/png",
"name": null,
"description": null,
"embedId": null,
"embedPlatform": null,
"imageAverageColor": "#917357",
"imageWidth": 2662,
"imageHeight": 1504,
"mediaDuration": 0,
"copyright": null,
"externalUrl": null,
"processable": true,
"thumbnail": null,

70 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

"alt": "img_2004_framed_1080p_2000.png"
},
"altSources": [

{
"@type": "Document",
"@id": "/api/documents/xxxxx",
"relativePath": "xxxxxxxx/img_2004_framed_1080p_2000.mp4",
"type": "video",
"mimeType": "video/mp4",
"name": null,
"description": null,
"embedId": null,
"embedPlatform": null,
"imageAverageColor": null,
"imageWidth": 0,
"imageHeight": 0,
"mediaDuration": 0,
"copyright": null,
"externalUrl": null,
"processable": false,
"thumbnail": null,
"alt": "img_2004_framed_1080p_2000.mp4"

}
],
"alt": "img_2004_framed_1080p_2000.webm"

}

Expose document folders

Document folders are not serialized by default for performance matters, but you can enable them in your project.
Add document_folders serialization group to your resource configuration.

{
"@type": "Document",
"@id": "/api/documents/3436",
"relativePath": "xxxxxxxx/youtube_wplj0yxcnwk.jpg",
"type": "image",
"mimeType": "image/jpeg",
"name": "Shirine - Bande annonce",
"description": "",
"embedId": "wPlj0YxCNwk",
"embedPlatform": "youtube",
"imageAverageColor": "#2d2426",
"imageWidth": 200,
"imageHeight": 113,
"mediaDuration": 0,
"copyright": "Opéra de Lyon (https://www.youtube.com/user/OperadeLyon)",
"externalUrl": null,
"processable": true,
"thumbnail": null,
"folders": [

{
"@type": "Folder",
"@id": "/api/folders/20",
"slug": "danse",
"name": "Danse",
"visible": true

},
{

"@type": "Folder",
"@id": "/api/folders/31",
"slug": "opera-inside",

3.1. Developer documentation 71

Roadiz Documentation, Release 2.2.1

"name": "Opera-inside",
"visible": false

}
],
"alt": "Shirine - Bande annonce"

}

3.1.6 Attributes
Attributes are entities meant to qualify features on other entities, such as nodes. The main difference between tags
and attributes is that you can set a value for each attributed node.

The attribute “Color” can be set to “red” for one node and set to “green” for an other one.

Okay, but now what is the difference between attributes and node-type fields? Not so much because node-type
fields describe your node’ features too, but they are fixed and defined by the developer. Once your node-type fields
are created, you have to implement your feature in your Twig templates, and translate it in your XLF files too.

Attributes are meant to be created and added by editors so they can use them in your website lifecycle without
needing any further development.

From the developer perspective, attributes are just a collection of entities to be displayed in a loop. Then your
editor can create new ones and be sure they will be displayed without any additional development.

<ul class="block-attributes">
{% for attributeValueTranslation in nodeSource|attributes %}

{% if attributeValueTranslation.attribute.documents|length %}

{% for document in attributeValueTranslation.attribute.documents %}
<figure>{{ document|display }}</figure>

{% endfor %}
{% endif %}
{{ attributeValueTranslation|attribute_label(translation) }}:</

→˓strong>
{% if attributeValueTranslation is datetime %}

{{ attributeValueTranslation.value|format_datetime('medium', 'short
→˓', locale=app.request.locale) }}

{% elseif attributeValueTranslation is date %}
{{ attributeValueTranslation.value|format_date('medium',

→˓locale=app.request.locale) }}
{% elseif attributeValueTranslation is country %}

{{ attributeValueTranslation.value|country_name(request.locale) }}
{% else %}

{{ attributeValueTranslation.value }}
{% endif%}

72 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

{% endfor %}

If you grouped your attributes, you can use grouped_attributes filter instead:

<ul class="block-attributes">
{% for item in nodeSource|grouped_attributes %}

{% if item.group %}

{{ item.group|attribute_group_label(translation) }}</
→˓strong>

{% endif %}

{% for attributeValueTranslation in item.attributeValues %}

{% if attributeValueTranslation.attribute.documents|length
→˓%}

{% for document in attributeValueTranslation.attribute.
→˓documents %}

<figure>{{ document|display }}</figure>
{% endfor %}

{% endif %}
{{ attributeValueTranslation|attribute_

→˓label(translation) }}:
{% if attributeValueTranslation is datetime %}

{{ attributeValueTranslation.value|format_datetime(
→˓'medium', 'short', locale=app.request.locale) }}

{% elseif attributeValueTranslation is date %}
{{ attributeValueTranslation.value|format_date('medium

→˓', locale=app.request.locale) }}
{% elseif attributeValueTranslation is country %}

{{ attributeValueTranslation.value|country_
→˓name(request.locale) }}

{% else %}
{{ attributeValueTranslation.value }}

{% endif%}

{% endfor %}

{% endfor %}

3.1. Developer documentation 73

Roadiz Documentation, Release 2.2.1

Attributes types

• String

• Date

• Date and time

• Single choice: choice among defined options in your attribute

• Boolean

• Integer

• Decimal

• Email

• Color

• Country: ISO 2-letters country code

Add attributes to nodes

Attribute section is available for any node in any translations.

74 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

Twig extension

Several filters and tests are available to ease up templating with attributes:

Filters

• attributes: same as node_source_attributes() method, get all available attributes from a
NodesSources.

• grouped_attributes: same as node_source_grouped_attributes() method, get all avail-
able attributes from a NodesSources and gather them into their group.

• attribute_label(translation): get attribute translated label or code if not translated.

• attribute_group_label(translation): get attribute group translated name or
canonicalName if not translated.

Tests

• datetime

• date

• country

• boolean

• choice

• enum

3.1.7 Forms
Roadiz uses Symfony forms logic and API. However, we made ready-made contact and custom forms builders to
ease up your development and even make form-building available for your website editors.

Building contact forms

With Roadiz you can easily create simple contact forms with ContactFormManager class. Your controller
has a convenient shortcut to create this manager with $this->createContactFormManager() method.

3.1. Developer documentation 75

Roadiz Documentation, Release 2.2.1

If you want to add your own fields, you can use the manager’ form-builder with
$contactFormManager->getFormBuilder();. Then add your field using standard Symfony form
syntax. Do not forget to use Constraints to handle errors.

One contact-form for one action

Here is an example to create your contact form in your controller action.

1 use Symfony\Component\Validator\Constraints\File;
2 use Symfony\Component\Form\Extension\Core\Type\CheckboxType;
3 use Symfony\Component\Form\Extension\Core\Type\FileType;
4 use Symfony\Component\Form\Extension\Core\Type\SubmitType;
5

6 // ...
7 // Create contact-form manager and add 3 default fields.
8 $contactFormManager = $this->createContactFormManager()
9 ->withDefaultFields();

10 /*
11 * (Optional) Add custom fields...
12 */
13 $formBuilder = $contactFormManager->getFormBuilder();
14 $formBuilder->add('callMeBack', CheckboxType::class, [
15 'label' => 'call.me.back',
16 'required' => false,
17])
18 ->add('document', FileType::class, [
19 'label' => 'document',
20 'required' => false,
21 'constraints' => [
22 new File([
23 'maxSize' => $contactFormManager->getMaxFileSize(),
24 'mimeTypes' => $contactFormManager->getAllowedMimeTypes(),
25]),
26]
27])
28 ->add('send', SubmitType::class, [
29 'label' => 'send.contact.form',
30]);
31

32 /*
33 * This is the most important point. handle method will perform form
34 * validation and send email.
35 *
36 * Handle method should return a Response object if everything is OK.
37 */
38 if (null !== $response = $contactFormManager->handle()) {
39 return $response;
40 }
41

42 $form = $contactFormManager->getForm();

In this example, we used withDefaultFieldsmethod which add automatically email, name and message
fields with right validation constraints. This method is optional and you can add any field you want manually, just
keep in mind that you should always ask for an email.

Then in your contact page Twig template:

1 {#
2 # Display contact errors
3 #}
4 {% for label, messages in app.flashes(['warning', 'error']) %}
5 {% for message in messages %}
6 <p class="alert alert-{{ label }}">

76 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

7 {{- message -}}
8 </p>
9 {% endfor %}

10 {% endfor %}
11 {#
12 # Display contact form
13 #}
14 {% form_theme contactForm '@MyTheme/forms.html.twig' %}
15 {{ form(contactForm) }}

Using contact-form in block controllers

If you want to use contact-forms in blocks instead of a full page, you will need to make your redirection response
bubble through Twig render. The only way to stop Twig is to throw an exception and to pass your Redirect or
Json response within your Exception.

Roadiz makes this possible with RZ\Roadiz\CoreBundle\Exception\ForceResponseException.
For example, in a App/Controllers/ContactBlockController, instead of returning the
contactFormManager response, you will have to throw a ForceResponseException with it as an ar-
gument.

1 // ./src/Controllers/ContactBlockController.php
2

3 use RZ\Roadiz\CoreBundle\Exception\ForceResponseException;
4

5 ...
6 // Create contact-form manager and add 3 default fields.
7 $contactFormManager = $this->createContactFormManager()
8 ->withDefaultFields();
9

10 if (null !== $response = $contactFormManager->handle()) {
11 /*
12 * Force response to bubble through Twig rendering process.
13 */
14 throw new ForceResponseException($response);
15 }
16

17 $form = $contactFormManager->getForm();

Then, in your master controller (i.e. PageController), render method will automatically catch your
ForceResponseException exception in order to extract the forced response object. Then it will return your re-
sponse instead of your page twig rendered output.

Alter email configuration after form submit

If you want to customize emails sent with form data, you can use Symfony form events to change the contact
form manager options: The following example alters the email subject to add the user email and makes the subject
unique for the receiver.

$formBuilder->addEventListener(FormEvents::SUBMIT, function (FormEvent $event) use
→˓($contactFormManager) {

$contactFormManager->setSubject($contactFormManager->getSubject() . ': ' .
→˓$event->getForm()->get('email')->getData());
});

You can also use this behaviour to change dynamically the contact form receiver after the user chose it in a select
box input.

Note: You can read more about form events at https://symfony.com/doc/current/form/events.html

3.1. Developer documentation 77

https://symfony.com/doc/current/form/events.html

Roadiz Documentation, Release 2.2.1

Securing your form with Google reCAPTCHA

Roadiz can seamlessly use Google reCAPTCHA to secure your contact form against robots. All you need to do
is to register on https://www.google.com/recaptcha/ to ask for a sitekey and a secret. Once you’ve got these two
keys, add them to your .env.local or Symfony secrets.

• APP_RECAPTCHA_PRIVATE_KEY

• APP_RECAPTCHA_PUBLIC_KEY

Then, just use withGoogleRecaptcha() method on your contact-form manager.

// Create contact-form manager, add 3 default fields and add a reCAPTCHA.
$contactFormManager = $this->createContactFormManager()

->withDefaultFields()
->withGoogleRecaptcha();

Do not forget to add recaptcha form-template and to embed google’s javascript.

{# In your theme’ forms.html.twig file #}
{% block recaptcha_widget -%}

<input id="my-form-recaptcha" type="hidden" name="{{ form.vars.name }}" />
<script src="https://www.google.com/recaptcha/api.js?render={{ configs.

→˓publicKey }}"></script>
<script>

/*
* Google Recaptcha v3

* @see https://developers.google.com/recaptcha/docs/v3

*/
(function() {

if (!window.grecaptcha) {
console.warn('Recaptcha is not loaded');

}
var form = document.getElementById('my-form');
form.addEventListener('submit', function (event) {

event.preventDefault();
window.grecaptcha.ready(function() {

window.grecaptcha.execute('{{ configs.publicKey }}', {action:
→˓'submit'}).then(function(token) {

var input = document.getElementById('my-form-recaptcha');
if (input) {

input.value = token;
}
form.submit()

});
});

});
})();

</script>
{%- endblock recaptcha_widget %}

Building custom forms

Building a custom form looks like building a node but it is a lot simpler! Let’s have a look at structure image.

78 Chapter 3. Developer documentation

https://www.google.com/recaptcha/

Roadiz Documentation, Release 2.2.1

After creating a custom form, you add some question. The questions are the CustomFormField type.

The answer is saved in two entities:

• in CustomFormAnswer

• in CustomFormFieldAttribute

The CustomFormAnswer will store the IP and the submitted time. While question answer will be in CustomForm-
FieldAttribute with the CustomFormAnswer id and the CustomFormField id.

Exposing a custom form in your API

Custom-form can be filled in a headless context, using _definition_ and _post_ endpoints:

GET {{baseUrl}}/api/custom_forms/:id/definition

Custom form definition is a JSON form schema meant to give your frontend application a recipe to build a HTML
form:

{
"title": "",
"type": "object",
"properties": {

"subject": {
"type": "string",
"title": "Subject",
"attr": {

"data-group": null,
"placeholder": null

},
"description": "Est aut quas eum error architecto.",
"propertyOrder": 1

},
"email": {

"type": "string",
"title": "Email",
"attr": {

"data-group": null,

3.1. Developer documentation 79

Roadiz Documentation, Release 2.2.1

"placeholder": null
},
"description": "Email address",
"widget": "email",
"propertyOrder": 2

},
"test": {

"title": "TEST",
"type": "object",
"properties": {

"message": {
"type": "string",
"title": "Message",
"attr": {

"data-group": "TEST",
"placeholder": null

},
"widget": "textarea",
"propertyOrder": 1

},
"fichier": {

"type": "string",
"title": "File",
"attr": {

"data-group": "TEST",
"placeholder": null

},
"widget": "file",
"propertyOrder": 2

}
},
"required": [

"fichier"
],
"attr": {

"data-group-wrapper": "test"
},
"propertyOrder": 3

}
},
"required": [

"subject",
"email",
"test"

]
}

Then you can send your data to the post endpoint using FormData and respecting field hierarchy:

POST {{baseUrl}}/api/custom_forms/:id/post

If there are any error, a JSON response will give you details fields-by-fields.

If post is successful, APi will respond an empty 202 Accepted response

Then you will be able to see all your form submits in Roadiz backoffice :

80 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

3.1. Developer documentation 81

Roadiz Documentation, Release 2.2.1

In Manage custom forms section / Answers

Note: Any file attached to your custom-form answers will be uploaded as private documents.

82 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

Adding custom form to your theme

If you want to integrate your custom-forms into your theme, you can use Roadiz CustomFormHelper class to
generate a standard FormInterface and to create a view into your theme templates.

First you must create a dedicated action for your node or your block if you used {{
nodeSource|render(@AwesomeTheme) }} Twig filter.

1 use RZ\Roadiz\CoreBundle\Entity\CustomForm;
2 use RZ\Roadiz\CoreBundle\Exception\EntityAlreadyExistsException;
3 use RZ\Roadiz\CoreBundle\Exception\ForceResponseException;
4 use Symfony\Cmf\Component\Routing\RouteObjectInterface;
5 use RZ\Roadiz\CoreBundle\CustomForm\CustomFormHelper;
6 use Symfony\Component\Form\FormError;
7 use Symfony\Component\HttpFoundation\JsonResponse;
8

9 // ...
10

11 /*
12 * Get your custom form instance from your node-source
13 * only if you added a *custom_form reference field*.
14 */
15 $customForms = $this->nodeSource->getCustomFormReference();
16 if (isset($customForms[0]) && $customForms[0] instanceof CustomForm) {
17 /** @var CustomForm $customForm */
18 $customForm = $customForms[0];
19

20 /*
21 * Verify if custom form is still open
22 * for answers
23 */
24 if ($customForm->isFormStillOpen()) {
25 /*
26 * CustomFormHelper will generate Symfony form against
27 * Roadiz custom form entity.
28 * You can add a Google Recaptcha passing following options.
29 */
30 $helper = $this->customFormHelperFactory->createHelper($customForm);
31 $form = $helper->getForm($request, false, true);
32 $form->handleRequest($request);
33

34 if ($form->isSubmitted() && $form->isValid()) {
35 try {
36 $answer = $helper->parseAnswerFormData($form, null, $request->

→˓getClientIp());
37

38 if ($request->isXmlHttpRequest()) {
39 $response = new JsonResponse([
40 'message' => $this->getTranslator()->trans('form_has_been_

→˓successfully_sent')
41]);
42 } else {
43 $this->publishConfirmMessage(
44 $request,
45 $this->getTranslator()->trans('form_has_been_successfully_

→˓sent')
46);
47 $response = $this->redirect($this->generateUrl(
48 RouteObjectInterface::OBJECT_BASED_ROUTE_NAME,
49 [RouteObjectInterface::ROUTE_OBJECT => $this->nodeSource->

→˓getParent()]
50));
51 }

3.1. Developer documentation 83

Roadiz Documentation, Release 2.2.1

52 /*
53 * If you are in a BlockController use ForceResponseException
54 */
55 throw new ForceResponseException($response);
56 /*
57 * Or directly return redirect response.
58 */
59 //return $response;
60 } catch (EntityAlreadyExistsException $e) {
61 $form->addError(new FormError($e->getMessage()));
62 }
63 }
64

65 $this->assignation['form'] = $form->createView();
66 }
67 }

If you didn’t do it yet, create a custom form theme in your views/ folder:

1 {#
2 # AwesomeTheme/Resources/views/form.html.twig
3 #}
4 {% extends "bootstrap_3_layout.html.twig" %}
5

6 {% block form_row -%}
7 <div class="form-group form-group-{{ form.vars.block_prefixes[1] }} form-

→˓group-{{ form.vars.name }}">
8 {% if form.vars.block_prefixes[1] != 'separator' %}
9 {{- form_label(form) -}}

10 {% endif %}
11 {{- form_errors(form) -}}
12 {#
13 # Render field description inside your form
14 #}
15 {% if form.vars.attr['data-description'] %}
16 <div class="form-description">
17 {{ form.vars.attr['data-description']|markdown }}
18 </div>
19 {% endif %}
20 {{- form_widget(form) -}}
21 </div>
22 {%- endblock form_row %}
23

24 {% block recaptcha_widget -%}
25 <input id="my-form-recaptcha" type="hidden" name="{{ form.vars.name }}" />
26 <script src="https://www.google.com/recaptcha/api.js?render={{ configs.

→˓publicKey }}"></script>
27 <script>
28 /*
29 * Google Recaptcha v3
30 * @see https://developers.google.com/recaptcha/docs/v3
31 */
32 (function() {
33 if (!window.grecaptcha) {
34 console.warn('Recaptcha is not loaded');
35 }
36 var form = document.getElementById('my-form');
37 form.addEventListener('submit', function (event) {
38 event.preventDefault();
39 window.grecaptcha.ready(function() {
40 window.grecaptcha.execute('{{ configs.publicKey }}', {action:

→˓'submit'}).then(function(token) {
41 var input = document.getElementById('my-form-recaptcha');

84 Chapter 3. Developer documentation

Roadiz Documentation, Release 2.2.1

42 if (input) {
43 input.value = token;
44 }
45 form.submit()
46 });
47 });
48 });
49 })();
50 </script>
51 {%- endblock recaptcha_widget %}

In your main view, add your form and use your custom form theme:

1 {#
2 # AwesomeTheme/Resources/views/form-blocks/customformblock.html.twig
3 #}
4 {% if form %}
5 {% form_theme form '@AwesomeTheme/form.html.twig' %}
6 {{ form_start(form) }}
7 {{ form_widget(form) }}
8 <div class="form-group">
9 <button class="btn btn-primary" type="submit">{% trans %}send_form{%

→˓endtrans %}</button>
10 </div>
11 {{ form_end(form) }}
12 {% else %}
13 <p class="alert alert-warning">{% trans %}form_is_not_available{% endtrans %}

→˓</p>
14 {% endif %}

3.1.8 Contributing
If you want to contribute to Roadiz project by reporting issues or hacking code, let us thank you! You are awesome!

Reporting issues

When you encounter an issue with Roadiz we would love to hear about it. Because thanks to you, we can make
the most awesome and stable CMS! If you submit a bug report please include all information available to you,
here are some things you can do:

• Try to simplify the things you are doing until getting a minimal set of actions reproducing the problem.

• Do not forget to join a screenshot or a trace of your error.

Coding style

The code you contributed to the project should respect the guidelines defined in PHP PSR2 standard. If you install
the requirements for devs by the command composer update --dev, you can use phpcs to check your code.
You can copy and paste the following command-lines to check easily:

php bin/phpcs --report=full --report-file=./report.txt -p ./

Or you can use phpcbf to automatically fix code style issues.

php bin/phpcbf --report=full --report-file=./report.txt -p ./

Please take those rules into account, we aim to have a clean codebase. A coherent code-style will contribute to
Roadiz stability. Your code will be checked when we will be considering your pull requests.

Static analysis

Then we use phpstan as a static code analyzer to check bugs and misuses before they occur:

3.1. Developer documentation 85

Roadiz Documentation, Release 2.2.1

php bin/phpstan analyse -c phpstan.neon

3.1.9 Troubleshooting

Empty caches manually for an environment

If you experience errors only on a dedicated environment such as prod``or ``dev, it means that cache is not
fresh for these environments. As a first try, you should always call bin/console cache:clear; (replace
prod by your environment) in command line.

Problem with entities and Doctrine cache?

After each Roadiz upgrade you should always upgrade your node-sources entity classes and upgrade database
schema.

bin/console generate:nsentities;
bin/console doctrine:schema:update --dump-sql --force;
bin/console cache:clear;

86 Chapter 3. Developer documentation

CHAPTER 4

Extension documentation

4.1 Extension system

4.1.1 Extending Roadiz

Add back-office entry

At first, create a controller into your theme folder, for example src/Controller/Admin/
AdminController.

Example:

namespace App\Controller\Admin;

use Themes\Rozier\RozierApp;
use Symfony\Component\HttpFoundation\Request;

class AdminController extends RozierApp
{

public function listAction(
Request $request

) {
return $this->render(

'admin/test.html.twig',
$this->assignation

);
}

}

If you look at this example you can see the class extends RozierApp class. This will enable you to “inject” your
code into Rozier Back-stage DOM and Style.

Now let’s have a look to your twig template file templates/admin/test.html.twig.

{% extends '@Rozier/layout.html.twig' %}

{% block customStyles %}
<style>

/* Custom styles here */
</style>
{% endblock %}

87

Roadiz Documentation, Release 2.2.1

{% block customScripts %}
<script>

/* Custom Scripts here */
</script>
{% endblock %}

{% block content %}
<section class="content-global add-test">

<header class="content-header header-test header-test-edit">
<h1 class="content-title test-add-title">{% trans %}Test admin{% endtrans

→˓%}</h1>
</header>

<article class="content content-test">
<p>This page is created from MyTheme to show you how to extend backoffice

→˓features.</p>
</article>

</section>
{% endblock %}

The first line is for inheriting from Rozier base template, you can notice that we explicitly choose @Rozier
namespace.

The two next blocks are made for you to add some CSS or Javascript. For CSS, the block customStyle can
be use to link an external file with a <link> tag, the path must be something like that {{ asset('static/
css/customstyle.css', 'MyTheme') }}, or add directly some CSS with “<style>” tag. For JS, the
block customScripts work as is, just link an external JS file or write your <script> tag.

Then create your own content, do not hesitate to give a look at Rozier back-stage theme Twig files to use the
right DOM structure. For simple features, you wouldn’t have to extend JS nor CSS if you follow the same HTML
coding style.

Linking things together

Add the route in the theme config/routes.yaml file.

In this case the route will be:

adminTestPage:
Setting your path behind rz-admin will activate Firewall
path: /rz-admin/test
defaults:

_controller: App\Controller\Admin\AdminController::listAction

Inject your own entries in back-stage

The last thing to do is to add your new admin entry in the back-office menu.

Go to your config/packages/roadiz_rozier.yaml and add your own entries:

roadiz_rozier:
entries:

...
customAdmin:

name: customAdmin
route: adminTestPage
icon: uk-icon-cube
roles: ~

If you want to have a category and sub-entries, just change the path at null value and create your subentries
array as described in the next example:

88 Chapter 4. Extension documentation

Roadiz Documentation, Release 2.2.1

roadiz_rozier:
entries:

...
customAdmin:

name: customAdmin
route: ~
icon: uk-icon-cube
roles: ~
subentries:

customAdminPage:
name: 'customAdmin page'
route: adminTestPage
icon: uk-icon-cube
roles: ~

You can restrict buttons to users with specific roles. Just replace roles: ~ with roles: [
'ROLE_ACCESS_NODES']. You can even create your own roles to take full power of Roadiz extension system.

Warning: Adding roles in roadiz_rozier.entries service will only restrict buttons dis-
play in Rozier backstage interface. To really protect your controllers from unwanted users add
$this->validateAccessForRole('ROLE_ACCESS_MY_FEATURE'); at the first line of your
back-ofice controller‘s actions. This will kick non-granted users from your custom back-office parts. Give
a look at Rozier theme controllers to see how we use it.

4.1.2 Events
Roadiz node system implements several events. So you will be able to create and inject your own event subscribers
inside Roadiz dispatcher.

To understand how the event dispatcher works, you should read the Symfony documentation at before.

Nodes events

• RZ\Roadiz\CoreBundle\Event\Node\NodeCreatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Node\NodeUpdatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Node\NodeDeletedEvent::class

• RZ\Roadiz\CoreBundle\Event\Node\NodeUndeletedEvent::class

• RZ\Roadiz\CoreBundle\Event\Node\NodeDuplicatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Node\NodePathChangedEvent::class

• RZ\Roadiz\CoreBundle\Event\Node\NodeTaggedEvent::class: This event is triggered
for tag and un-tag action.

• RZ\Roadiz\CoreBundle\Event\Node\NodeVisibilityChangedEvent::class: This
event is triggered each time a node becomes visible or unvisible.

• RZ\Roadiz\CoreBundle\Event\Node\NodeStatusChangedEvent::class: This event is
triggered each time a node status changes.

Each node event object contains the current Node entity. You will get it using $event->getNode().

NodesSources events

RZ\Roadiz\CoreBundle\Event\NodesSourcesEvents

• RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesCreatedEvent::class

• RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesPreUpdatedEvent::class:
This event is dispatched BEFORE entity manager FLUSHED.

4.1. Extension system 89

http://symfony.com/doc/current/components/event_dispatcher/introduction.html

Roadiz Documentation, Release 2.2.1

• RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesUpdatedEvent::class:
This event is dispatched AFTER entity manager FLUSHED.

• RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesDeletedEvent::class

Each node-source event object contains the current NodesSources entity. You will get it using
$event->getNodeSource().

• RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesIndexingEvent::class:
This event type is dispatched during Solr indexation. Your event will be
\RZ\Roadiz\CoreBundle\Event\FilterSolariumNodeSourceEvent and it will allow
you to alter or improve your Solr index according to your node-source type.

Note: You will find a simple subscriber example in Roadiz back-office theme which is called
Themes\Rozier\Events\SolariumSubscriber. This subscriber is useful to update or delete your Solr
index documents against your node-source database.

• RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesPathGeneratingEvent::class:
This event type is dispatched when the node-router generate a path for your node-source using {{ path()
}} Twig method or $this->urlGenerator->generate() controller method. The default sub-
scriber will generate the complete hierarchical path for any node-source using their identifier (available
url-alias or node’ name).

Tags events

• RZ\Roadiz\CoreBundle\Event\Tag\TagCreatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Tag\TagUpdatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Tag\TagDeletedEvent::class

Each tag event object contains the current Tag entity. You will get it using $event->getTag().

Folders events

• RZ\Roadiz\CoreBundle\Event\Folder\FolderCreatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Folder\FolderUpdatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Folder\FolderDeletedEvent::class

Each folder event object contains the current Folder entity. You will get it using $event->getFolder().

Translations events

• RZ\Roadiz\CoreBundle\Event\Translation\TranslationCreatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Translation\TranslationUpdatedEvent::class

• RZ\Roadiz\CoreBundle\Event\Translation\TranslationDeletedEvent::class

Each folder event object contains the current Translation entity. You will get it using
$event->getTranslation().

UrlAlias events

• RZ\Roadiz\CoreBundle\Event\UrlAlias\UrlAliasCreatedEvent::class

• RZ\Roadiz\CoreBundle\Event\UrlAlias\UrlAliasUpdatedEvent::class

• RZ\Roadiz\CoreBundle\Event\UrlAlias\UrlAliasDeletedEvent::class

Each folder event object contains the current UrlAlias entity. You will get it using
$event->getUrlAlias().

90 Chapter 4. Extension documentation

Roadiz Documentation, Release 2.2.1

User events

• RZ\Roadiz\CoreBundle\Event\User\UserCreatedEvent::class

• RZ\Roadiz\CoreBundle\Event\User\UserUpdatedEvent::class

• RZ\Roadiz\CoreBundle\Event\User\UserDeletedEvent::class

• RZ\Roadiz\CoreBundle\Event\User\UserDisabledEvent::class

• RZ\Roadiz\CoreBundle\Event\User\UserEnabledEvent::class

• RZ\Roadiz\CoreBundle\Event\User\UserPasswordChangedEvent::class

Each folder event object contains the current User entity. You will get it using $event->getUser().

4.1.3 Extending Solr indexation

How to index page blocks contents

If all your text content is written in block nodes instead of reachable pages, you should index them into your page
Solr documents to improve your search engine relevancy.

You can use the NodesSourcesIndexingEvent::class event to enhance your node indexing data before
it’s persisted into Solr engine (especially collection_txt field):

<?php

declare(strict_types=1);

namespace App\EventSubscriber;

use RZ\Roadiz\CoreBundle\Api\TreeWalker\AutoChildrenNodeSourceWalker;
use RZ\Roadiz\CoreBundle\Entity\NodesSources;
use RZ\Roadiz\CoreBundle\Event\NodesSources\NodesSourcesIndexingEvent;
use RZ\Roadiz\CoreBundle\SearchEngine\SolariumFactoryInterface;
use RZ\TreeWalker\WalkerContextInterface;
use RZ\TreeWalker\WalkerInterface;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

/**
* Index sub nodes content into any reachable node-source.

*/
final class NodeSourceIndexingEventSubscriber implements EventSubscriberInterface
{

private WalkerContextInterface $walkerContext;
private SolariumFactoryInterface $solariumFactory;
private int $maxLevel;

/**
* @param WalkerContextInterface $walkerContext

* @param SolariumFactoryInterface $solariumFactory

* @param int $maxLevel

*/
public function __construct(

WalkerContextInterface $walkerContext,
SolariumFactoryInterface $solariumFactory,
int $maxLevel = 5

) {
$this->walkerContext = $walkerContext;
$this->solariumFactory = $solariumFactory;
$this->maxLevel = $maxLevel;

}

/**
* @inheritDoc

4.1. Extension system 91

Roadiz Documentation, Release 2.2.1

*/
public static function getSubscribedEvents(): array
{

return [
NodesSourcesIndexingEvent::class => ['onIndexing'],

];
}

public function onIndexing(NodesSourcesIndexingEvent $event): void
{

$nodeSource = $event->getNodeSource();

if (null !== $nodeSource->getNode() && $nodeSource->isReachable() && !
→˓$event->isSubResource()) {

$assoc = $event->getAssociations();

$blockWalker = AutoChildrenNodeSourceWalker::build(
$nodeSource,
$this->walkerContext,
$this->maxLevel

);

// Need a locale field
$locale = $nodeSource->getTranslation()->getLocale();
$lang = \Locale::getPrimaryLanguage($locale) ?? 'fr';

foreach ($blockWalker->getChildren() as $subWalker) {
$this->walkAndIndex($subWalker, $assoc, $lang);

}

$event->setAssociations($assoc);
}

}

/**
* @param WalkerInterface $walker

* @param array $assoc

* @param string $locale

* @throws \Exception

*/
protected function walkAndIndex(WalkerInterface $walker, array &$assoc, string

→˓$locale): void
{

$item = $walker->getItem();
if ($item instanceof NodesSources) {

$solarium = $this->solariumFactory->createWithNodesSources($walker->
→˓getItem());

// Fetch all fields array association AS sub-resources (i.e. do not
→˓index their title)

$childAssoc = $solarium->getFieldsAssoc(true);
$assoc['collection_txt'] = array_filter(array_merge(

$assoc['collection_txt'],
$childAssoc['collection_txt']

));
if (!empty($childAssoc['collection_txt_' . $locale])) {

$assoc['collection_txt_' . $locale] .= PHP_EOL . $childAssoc[
→˓'collection_txt_' . $locale];

}
}
if ($walker->count() > 0) {

foreach ($walker->getChildren() as $subWalker) {
$this->walkAndIndex($subWalker, $assoc, $locale);

}

92 Chapter 4. Extension documentation

Roadiz Documentation, Release 2.2.1

}
}

}

4.1. Extension system 93

Roadiz Documentation, Release 2.2.1

94 Chapter 4. Extension documentation

Index

A
attribute, 65
attribute_documents, 65

C
color, 65
custom_form, 65

D
document, 65
document_display, 65
document_display_sources, 65
document_folders, 65
document_folders_all, 65
document_private, 65
document_thumbnails, 65

F
folder, 65

I
id, 64

N
node, 65
node_attributes, 65
node_children, 65
node_listing, 65
node_type, 65
nodes_sources, 65
nodes_sources_base, 65
nodes_sources_default, 65
nodes_sources_documents, 65
nodes_sources_‘‘group‘‘, 65

P
position, 65

S
setting, 65
setting_group, 65

T
tag, 65

tag_base, 65
tag_children, 65
tag_children_order, 65
tag_color, 65
tag_documents, 65
tag_parent, 65
timestamps, 64
translation, 65
translation_base, 65

U
user, 66
user_group, 66
user_identifier, 66
user_personal, 66
user_role, 66

95

	Philosophy
	User documentation
	User documentation
	Write in Markdown
	Managing nodes
	Managing node-types
	Managing documents
	Managing users

	Developer documentation
	Developer documentation
	First steps
	Node system
	Building headless websites using API
	Tag system
	Documents system
	Attributes
	Forms
	Contributing
	Troubleshooting

	Extension documentation
	Extension system
	Extending Roadiz
	Events
	Extending Solr indexation

	Index

